Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/muellerzr/fastai_minima

Minimal fastai code needed for working with pytorch
https://github.com/muellerzr/fastai_minima

Last synced: 2 months ago
JSON representation

Minimal fastai code needed for working with pytorch

Awesome Lists containing this project

README

        

# fastai_minima
> A mimal version of fastai with the barebones needed to work with Pytorch

```python
#all_slow
```

## Install

`pip install fastai_minima`

## How to use

This library is designed to bring in only the _minimal_ needed from [fastai](https://github.com/fastai/fastai) to work with raw Pytorch. This includes:

* Learner
* Callbacks
* Optimizer
* DataLoaders (but not the `DataBlock`)
* Metrics

Below we can find a very minimal example based off my [Pytorch to fastai, Bridging the Gap](https://muellerzr.github.io/fastblog/2021/02/14/Pytorchtofastai.html) article:

```python
import torch
import torchvision
import torchvision.transforms as transforms

transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))])

dset_train = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)

dset_test = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)

trainloader = torch.utils.data.DataLoader(dset_train, batch_size=4,
shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(dset_test, batch_size=4,
shuffle=False, num_workers=2)
```

Files already downloaded and verified
Files already downloaded and verified

```python
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
```

```python
criterion = nn.CrossEntropyLoss()
```

```python
from torch import optim
from fastai_minima.optimizer import OptimWrapper
from fastai_minima.learner import Learner, DataLoaders
from fastai_minima.callback.training import CudaCallback, ProgressCallback
```

```python
def opt_func(params, **kwargs): return OptimWrapper(optim.SGD(params, **kwargs))

dls = DataLoaders(trainloader, testloader)
```

```python
learn = Learner(dls, Net(), loss_func=criterion, opt_func=opt_func)

# To use the GPU, do
# learn = Learner(dls, Net(), loss_func=criterion, opt_func=opt_func, cbs=[CudaCallback()])
```

```python
learn.fit(2, lr=0.001)
```



epoch
train_loss
valid_loss
time




0
2.269467
2.266472
01:20


1
1.876898
1.879593
01:21

/mnt/d/lib/python3.7/site-packages/torch/autograd/__init__.py:132: UserWarning: CUDA initialization: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx (Triggered internally at /pytorch/c10/cuda/CUDAFunctions.cpp:100.)
allow_unreachable=True) # allow_unreachable flag

If you want to do differential learning rates, when creating your `splitter` to pass into fastai's `Learner` you should utilize the `convert_params` to make it compatable with Pytorch Optimizers:

```python
def splitter(m): return convert_params([[m.a], [m.b]])
```
```python
learn = Learner(..., splitter=splitter)
```