https://github.com/muhammedbuyukkinaci/fruit-detector
Implementation of TensorFlow Object Detection API on fruit images.
https://github.com/muhammedbuyukkinaci/fruit-detector
Last synced: 6 months ago
JSON representation
Implementation of TensorFlow Object Detection API on fruit images.
- Host: GitHub
- URL: https://github.com/muhammedbuyukkinaci/fruit-detector
- Owner: MuhammedBuyukkinaci
- Created: 2018-07-02T19:27:28.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2018-07-19T06:26:26.000Z (about 7 years ago)
- Last Synced: 2025-03-30T18:43:57.139Z (7 months ago)
- Language: Python
- Homepage:
- Size: 19.8 MB
- Stars: 37
- Watchers: 7
- Forks: 15
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Fruit-Detector
Implementation of [TensorFlow Object Detection API on Windows 10](https://www.youtube.com/watch?v=Rgpfk6eYxJA) with fruit images without Anaconda Distribution.# Changes
No Anaconda Distribution. Use command prompt instead of Anaconda Prompt.
1)Don't use the below commands in 2d.
```conda create -n tensorflow1 pip python=3.5```
```activate tensorflow1```
2)Change the command below in 2d
```conda install -c anaconda protobuf```
to this
```pip install protobuf --upgrade```
3)Download protoc.exe from [here](https://github.com/google/protobuf/releases/download/v3.6.0/protoc-3.6.0-win32.zip) . Copy protoc.exe(in bin folder) to C:\tensorflow1\models\research.
Then run 2f.4)Before step6, open C:\tensorflow1\models\research\object_detection\utils\learning_schedules.py with a text editor.
Change the line 168 from
```range(num_boundaries)```
to
```list(range(num_boundaries))```
# Data
Data can be downloaded from [here](https://www.kaggle.com/mbkinaci/fruit-images-for-object-detection). 240 training images 60 test images. No problematic image.
3 different types of fruits: Apple, Banana, Orange.
.xml files in data have coordinates of objects.
# Training
I trained it on a GTX 1050 for 5 hours. Approximately 53000 iterations.
# Implemented Model
Faster R CNN inception v2 model.
# Youtube Video
[](https://www.youtube.com/watch?v=BCO1XdwUZYw&feature=youtu.be)
# Results on images
Input Image | Output Image
:-------------------------:|:-------------------------|
![]()
Input Image | Output Image
:-------------------------:|:-------------------------|
![]()
Input Image | Output Image
:-------------------------:|:-------------------------|
![]()
Input Image | Output Image
:-------------------------:|:-------------------------|
![]()
Input Image | Output Image
:-------------------------:|:-------------------------|
![]()
# Credits
Credits go to [EdgeElectronics](https://github.com/EdjeElectronics). I just followed the steps in the tutorial.