Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/musyoku/adversarial-autoencoder
Chainer implementation of adversarial autoencoder (AAE)
https://github.com/musyoku/adversarial-autoencoder
Last synced: 2 months ago
JSON representation
Chainer implementation of adversarial autoencoder (AAE)
- Host: GitHub
- URL: https://github.com/musyoku/adversarial-autoencoder
- Owner: musyoku
- Created: 2016-02-23T08:16:41.000Z (almost 9 years ago)
- Default Branch: master
- Last Pushed: 2018-03-07T12:32:25.000Z (almost 7 years ago)
- Last Synced: 2024-08-02T12:21:59.372Z (5 months ago)
- Language: Python
- Homepage:
- Size: 1.91 MB
- Stars: 256
- Watchers: 18
- Forks: 76
- Open Issues: 10
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## Adversarial AutoEncoder
- Code for the [paper](https://arxiv.org/abs/1511.05644)
### Requirements
- Chainer 2+
- Python 2 or 3## Incorporating Label Information in the Adversarial Regularization
run `semi-supervised/regularize_z/train.py`
We trained with a prior (a mixture of 10 2-D Gaussians or Swissroll distribution) on 10K labeled MNIST examples and 40K unlabeled MNIST examples.
![gaussian](http://musyoku.github.io/images/post/2016-02-22/gaussian.png)
![swissroll](http://musyoku.github.io/images/post/2016-02-22/swissroll.png)
## Supervised Adversarial Autoencoders
run `supervised/learn_style/train.py`
![analogy](https://github.com/musyoku/musyoku.github.io/blob/master/images/post/2016-02-22/analogy_supervised.png?raw=true)
## Semi-Supervised Adversarial Autoencoders
run `semi-supervised/classification/train.py`
| data | # |
|:--:|:--:|
| labeled | 100 |
| unlabeled | 49900 |
| validation | 10000 |#### Validation accuracy at each epoch
![classification](https://github.com/musyoku/musyoku.github.io/blob/master/images/post/2016-02-22/classification.png?raw=true)
#### Analogies
![analogy_semi](https://github.com/musyoku/musyoku.github.io/blob/master/images/post/2016-02-22/analogy_semi.png?raw=true)
## Unsupervised clustering
run `unsupervised/clustering/train.py`
#### 16 clusters
![clusters_16](https://github.com/musyoku/musyoku.github.io/blob/master/images/post/2016-02-22/clusters_16.png?raw=true)
#### 32 clusters
![clusters_32](https://github.com/musyoku/musyoku.github.io/blob/master/images/post/2016-02-22/clusters_32.png?raw=true)
## Dimensionality reduction
run `unsupervised/dim_reduction/train.py`
![reduction_unsupervised](https://github.com/musyoku/musyoku.github.io/blob/master/images/post/2016-02-22/reduction_unsupervised.png?raw=true)
run `semi-supervised/dim_reduction/train.py`
![reduction_100](https://github.com/musyoku/musyoku.github.io/blob/master/images/post/2016-02-22/reduction_100.png?raw=true)