Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/musyoku/ddgm
Chainer implementation of Deep Directed Generative Models with Energy-Based Probability Estimation
https://github.com/musyoku/ddgm
Last synced: 3 months ago
JSON representation
Chainer implementation of Deep Directed Generative Models with Energy-Based Probability Estimation
- Host: GitHub
- URL: https://github.com/musyoku/ddgm
- Owner: musyoku
- Created: 2016-09-27T12:40:03.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2016-11-20T05:59:43.000Z (about 8 years ago)
- Last Synced: 2024-08-02T12:22:06.309Z (6 months ago)
- Language: Python
- Homepage:
- Size: 131 KB
- Stars: 2
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## Deep Directed Generative Models with Energy-Based Probability Estimation
code for the [paper](https://arxiv.org/abs/1606.03439)
[この記事](http://musyoku.github.io/2016/10/28/Deep-Directed-Generative-Models-with-Energy-Based-Probability-Estimation/)で実装したコードです。
### Requirements
- Chainer 1.17
- PIL
- pylabContains the following repository:
- [chainer-sequential](https://github.com/musyoku/chainer-sequential)
## 2D datasets
Train generator to generate 10 dimensional Gaussian mixture distribution and swiss-roll distribution.
![gaussian](https://github.com/musyoku/musyoku.github.io/blob/master/images/post/2016-10-28/gaussian.png?raw=true)
![swiss_roll](https://github.com/musyoku/musyoku.github.io/blob/master/images/post/2016-10-28/swissroll.png?raw=true)See videos:
- [https://gfycat.com/DarlingShowyHypsilophodon](https://gfycat.com/DarlingShowyHypsilophodon)
- [https://gfycat.com/UnrulyMisguidedHornedviper](https://gfycat.com/UnrulyMisguidedHornedviper)### Running
run `train_2d/train.py` to train the model.
run `train_2d/gif_gaussian.py` or `train_2d/gif_swissroll.py` to generate gif frames.
## MNIST
run `train_mnist/train.py`
If there is no MNIST image, it will be downloaded automatically.
### Genereted images
![result](https://github.com/musyoku/musyoku.github.io/blob/master/images/post/2016-10-28/mnist_success.png?raw=true)
## killmebaby(キルミーベイベー)
Download 686 images from [http://killmebaby.tv/special_icon.html](http://killmebaby.tv/special_icon.html) and resize all to 64x64 pixels.
run `train_killmebaby/train.py`
### Original images
![original](https://github.com/musyoku/musyoku.github.io/blob/master/images/post/2016-10-28/kb_original.png?raw=true)
### Images generated by Deep Generative Model
![gen](https://github.com/musyoku/musyoku.github.io/blob/master/images/post/2016-10-28/kb_gen.png?raw=true)
Since the position of the face of the training data is not constant, I think it is difficult to train the generator, but relatively clean images are generated.
### When learning of Generator did not go well
![gen](https://github.com/musyoku/musyoku.github.io/blob/master/images/post/2016-10-28/kb_fail.png?raw=true)
Whichever noise z is used to generate an image, an average is generated.