Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mwaskom/seaborn
Statistical data visualization in Python
https://github.com/mwaskom/seaborn
data-science data-visualization matplotlib pandas python
Last synced: 11 days ago
JSON representation
Statistical data visualization in Python
- Host: GitHub
- URL: https://github.com/mwaskom/seaborn
- Owner: mwaskom
- License: bsd-3-clause
- Created: 2012-06-18T18:41:19.000Z (over 12 years ago)
- Default Branch: master
- Last Pushed: 2024-08-14T20:01:50.000Z (3 months ago)
- Last Synced: 2024-10-19T17:07:10.753Z (20 days ago)
- Topics: data-science, data-visualization, matplotlib, pandas, python
- Language: Python
- Homepage: https://seaborn.pydata.org
- Size: 51.8 MB
- Stars: 12,487
- Watchers: 263
- Forks: 1,918
- Open Issues: 178
-
Metadata Files:
- Readme: README.md
- Contributing: .github/CONTRIBUTING.md
- License: LICENSE.md
- Citation: CITATION.cff
- Security: SECURITY.md
Awesome Lists containing this project
- my-awesome-starred - seaborn - Statistical data visualization using matplotlib (Python)
- awesome-fluid-dynamics - mwaskom/seaborn - Statistical data visualization in Python. ![Python](logo/Python.svg) (Visualization / 2D Visualization)
- fintech-awesome-libraries - seaborn - Statistical data visualization using matplotlib. (Data Visualization / General Purposes)
- awesome-quant-cn - seaborn - - 基于matplotlib的python可视化lib库 (可视化)
- awesome-systematic-trading - Seaborn - commit/mwaskom/seaborn/master) ![GitHub Repo stars](https://img.shields.io/github/stars/mwaskom/seaborn?style=social) | Python | - Statistical data visualization in Python (Visualization / TimeSeries Analysis)
- awesome-meteo - Seaborn
- awesome-python-machine-learning-resources - GitHub - 4% open · ⏱️ 26.08.2022): (数据可视化)
- awesome-python-resources - GitHub - 4% open · ⏱️ 26.08.2022): (数据可视化)
- awesome-starred - seaborn - Statistical data visualization using matplotlib (Python)
- awesome-python-machine-learning - Seaborn - Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing attractive statistical graphics. (Uncategorized / Uncategorized)
- awesome-production-machine-learning - seaborn - Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing attractive statistical graphics. (Industrial Strength Visualisation libraries)
- Awesome-AIML-Data-Ops - seaborn - Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing attractive statistical graphics. (Visualisation libraries)
- awesome-list - Seaborn - A high-level interface for drawing statistical graphics, based on Matplotlib. (Data Visualization / Data Management)
- StarryDivineSky - mwaskom/seaborn
- awesome-production-machine-learning - seaborn - Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing attractive statistical graphics. (Industry Strength Visualisation)
- awesome-time-series - seaborn - level interface for drawing attractive and informative statistical graphics. (📦 Packages / Python)
README
--------------------------------------
seaborn: statistical data visualization
=======================================[![PyPI Version](https://img.shields.io/pypi/v/seaborn.svg)](https://pypi.org/project/seaborn/)
[![License](https://img.shields.io/pypi/l/seaborn.svg)](https://github.com/mwaskom/seaborn/blob/master/LICENSE.md)
[![DOI](https://joss.theoj.org/papers/10.21105/joss.03021/status.svg)](https://doi.org/10.21105/joss.03021)
[![Tests](https://github.com/mwaskom/seaborn/workflows/CI/badge.svg)](https://github.com/mwaskom/seaborn/actions)
[![Code Coverage](https://codecov.io/gh/mwaskom/seaborn/branch/master/graph/badge.svg)](https://codecov.io/gh/mwaskom/seaborn)Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing attractive statistical graphics.
Documentation
-------------Online documentation is available at [seaborn.pydata.org](https://seaborn.pydata.org).
The docs include a [tutorial](https://seaborn.pydata.org/tutorial.html), [example gallery](https://seaborn.pydata.org/examples/index.html), [API reference](https://seaborn.pydata.org/api.html), [FAQ](https://seaborn.pydata.org/faq), and other useful information.
To build the documentation locally, please refer to [`doc/README.md`](doc/README.md).
Dependencies
------------Seaborn supports Python 3.8+.
Installation requires [numpy](https://numpy.org/), [pandas](https://pandas.pydata.org/), and [matplotlib](https://matplotlib.org/). Some advanced statistical functionality requires [scipy](https://www.scipy.org/) and/or [statsmodels](https://www.statsmodels.org/).
Installation
------------The latest stable release (and required dependencies) can be installed from PyPI:
pip install seaborn
It is also possible to include optional statistical dependencies:
pip install seaborn[stats]
Seaborn can also be installed with conda:
conda install seaborn
Note that the main anaconda repository lags PyPI in adding new releases, but conda-forge (`-c conda-forge`) typically updates quickly.
Citing
------A paper describing seaborn has been published in the [Journal of Open Source Software](https://joss.theoj.org/papers/10.21105/joss.03021). The paper provides an introduction to the key features of the library, and it can be used as a citation if seaborn proves integral to a scientific publication.
Testing
-------Testing seaborn requires installing additional dependencies; they can be installed with the `dev` extra (e.g., `pip install .[dev]`).
To test the code, run `make test` in the source directory. This will exercise the unit tests (using [pytest](https://docs.pytest.org/)) and generate a coverage report.
Code style is enforced with `flake8` using the settings in the [`setup.cfg`](./setup.cfg) file. Run `make lint` to check. Alternately, you can use `pre-commit` to automatically run lint checks on any files you are committing: just run `pre-commit install` to set it up, and then commit as usual going forward.
Development
-----------Seaborn development takes place on Github: https://github.com/mwaskom/seaborn
Please submit bugs that you encounter to the [issue tracker](https://github.com/mwaskom/seaborn/issues) with a reproducible example demonstrating the problem. Questions about usage are more at home on StackOverflow, where there is a [seaborn tag](https://stackoverflow.com/questions/tagged/seaborn).