Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mxhofer/Named-Entity-Recognition-BidirectionalLSTM-CNN-CoNLL
Keras implementation of "Few-shot Learning for Named Entity Recognition in Medical Text"
https://github.com/mxhofer/Named-Entity-Recognition-BidirectionalLSTM-CNN-CoNLL
bidirectional-lstm cnn-keras conll-2003 keras
Last synced: 2 months ago
JSON representation
Keras implementation of "Few-shot Learning for Named Entity Recognition in Medical Text"
- Host: GitHub
- URL: https://github.com/mxhofer/Named-Entity-Recognition-BidirectionalLSTM-CNN-CoNLL
- Owner: mxhofer
- License: mit
- Created: 2018-06-02T11:04:52.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2019-09-15T12:27:20.000Z (over 5 years ago)
- Last Synced: 2024-08-03T17:14:29.466Z (6 months ago)
- Topics: bidirectional-lstm, cnn-keras, conll-2003, keras
- Language: Jupyter Notebook
- Homepage: https://arxiv.org/abs/1811.05468
- Size: 9.91 MB
- Stars: 177
- Watchers: 11
- Forks: 83
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Named-Entity-Recognition-BLSTM-CNN-CoNLL
Keras implementation of the Bidirectional LSTM and CNN model similar to Chiu and Nichols (2016) for CoNLL 2003 news data. Paper: https://arxiv.org/abs/1811.05468The implementation differs from the original paper in these ways:
1) no lexicons
2) Nadam optimizer used instead of SGD
3) Parameters: LSTM cell size of 200 (vs 275), dropout of 0.5 (vs 0.68)Here is the corresponding Medium post with more details: https://medium.com/@maxhofer/deep-learning-for-named-entity-recognition-2-implementing-the-state-of-the-art-bidirectional-lstm-4603491087f1
Code adapted from: https://github.com/kamalkraj/Named-Entity-Recognition-with-Bidirectional-LSTM-CNNs
# Result
The implementation achieves a test F1 score of ~86 with 30 epochs. Increase the number of epochs to 80 reach an F1 over 90. The score produced in Chiu and Nichols (2016) is 91.62.# Dataset
CoNLL-2003 newswire articles: https://www.clips.uantwerpen.be/conll2003/ner/GloVe vector representation from Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. See https://nlp.stanford.edu/projects/glove/
# Dependencies
1) numpy 1.15.4
2) Keras 2.1.6
3) Tensorflow 1.8.0
4) Stanford GloVE embeddings