Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/myatmyintzuthin/aquarium_object_detection
Training an Aquarium Object Detection for underwater health monitoring using Tensorflow2 Object Detection API.
https://github.com/myatmyintzuthin/aquarium_object_detection
deep-learning object-detection tensorflow-object-detection-api underwater-object-detection
Last synced: 16 days ago
JSON representation
Training an Aquarium Object Detection for underwater health monitoring using Tensorflow2 Object Detection API.
- Host: GitHub
- URL: https://github.com/myatmyintzuthin/aquarium_object_detection
- Owner: myatmyintzuthin
- License: mit
- Created: 2021-10-07T05:12:10.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2021-10-30T04:31:32.000Z (about 3 years ago)
- Last Synced: 2023-08-02T10:39:38.604Z (over 1 year ago)
- Topics: deep-learning, object-detection, tensorflow-object-detection-api, underwater-object-detection
- Language: Jupyter Notebook
- Homepage:
- Size: 22.7 MB
- Stars: 1
- Watchers: 1
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Aquarium Object Detection :tropical_fish:
[![TensorFlow 2.6](https://img.shields.io/badge/TensorFlow-2.6-FF6F00?logo=tensorflow)](https://github.com/tensorflow/tensorflow/releases/tag/v2.6.0)Underwater Health Monitoring is an essential way to prevent extinction of sea animals and coral reef. In this repository, we will build an aquarium object detection system using Deep Learning and Computer Vision.
![sample1.jpg](https://github.com/myatmyintzuthin/aquarium_object_detection/blob/main/assets/sample1.PNG)
![sample2.jpg](https://github.com/myatmyintzuthin/aquarium_object_detection/blob/main/assets/sample2.PNG)
------
#### Dataset
The [Aquarium Object Detection Dataset](https://public.roboflow.com/object-detection/aquarium) is collected by Brad Dwyer(Roboflow team) from two aquariums in the United States: The Henry Doorly Zoo in Omaha (October 16, 2020) and the National Aquarium in Baltimore (November 14, 2020). The dataset consists of 638 images splitted into train, test and validation data.![train1.jpg](https://github.com/myatmyintzuthin/aquarium_object_detection/blob/main/assets/train1.jpg)
------
#### Model
We will be using EfficientDet D0 model from [TensorFlow 2 Detection Model Zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md). They provide a collection of detection models pre-trained on the [COCO 2017 dataset](https://cocodataset.org/).
| Model name | Speed (ms) | COCO mAP | Outputs |
| ----------- | ----------- | -------- | ------- |
| [EfficientDet D0 512x512](http://download.tensorflow.org/models/object_detection/tf2/20200711/efficientdet_d0_coco17_tpu-32.tar.gz) | 39 | 33.6 | Boxes |
------
#### Metrics
After training for 4300 steps:
```
{'Loss/classification_loss': 0.18720163,
'Loss/localization_loss': 0.08831813,
'Loss/regularization_loss': 0.04052207,
'Loss/total_loss': 0.31604183,
'learning_rate': 0.07999277}
```
Validation Detection Metrics:```
Accumulating evaluation results...
DONE (t=0.19s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.324
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.626
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.298
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.022
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.226
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.443
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.178
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.374
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.449
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.063
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.372
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.554
```
#### Tensor Board Metrics
![tensorboard.jpg](https://github.com/myatmyintzuthin/aquarium_object_detection/blob/main/assets/tensorboard.PNG)
------
#### References
[Custom object detection in the browser using TensorFlow.js by Hugo Zanini](https://blog.tensorflow.org/2021/01/custom-object-detection-in-browser.html) \
[TensorFlow Object Detection API Tutorial](https://readthedocs.org/projects/tensorflow-object-detection-api-tutorial/) \
[TensorFlow 2 Detection Model Zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md)