Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/myatmyintzuthin/face_mask_detection
Training a face mask detector using TensorFlow2 object detection API.
https://github.com/myatmyintzuthin/face_mask_detection
deep-learning face-mask-detection ssd-mobilenetv2 tensorflow-object-detection-api
Last synced: 16 days ago
JSON representation
Training a face mask detector using TensorFlow2 object detection API.
- Host: GitHub
- URL: https://github.com/myatmyintzuthin/face_mask_detection
- Owner: myatmyintzuthin
- License: mit
- Created: 2021-12-19T06:00:47.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2021-12-19T07:39:48.000Z (about 3 years ago)
- Last Synced: 2023-08-02T10:39:38.686Z (over 1 year ago)
- Topics: deep-learning, face-mask-detection, ssd-mobilenetv2, tensorflow-object-detection-api
- Language: Jupyter Notebook
- Homepage:
- Size: 6.6 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# face_mask_detection
[![TensorFlow 2.6](https://img.shields.io/badge/TensorFlow-2.6-FF6F00?logo=tensorflow)](https://github.com/tensorflow/tensorflow/releases/tag/v2.6.0)
![webcam_test](https://github.com/myatmyintzuthin/face_mask_detection/blob/main/assets/webcam_test.gif)
------
#### Dataset
The [Face mask Dataset](https://github.com/myatmyintzuthin/face_mask_detection/releases/download/v1.0.0/face_mask_dataset.zip) is collected and annotated by Self-Study-Camp team members on 22 November 2021. The dataset consists of 208 images splitted into 168 train, 40 test images in XML format.![dataset.PNG](https://github.com/myatmyintzuthin/face_mask_detection/blob/main/assets/dataset.PNG)
------
#### Model
We will be using SSD-mobilenetv2 model from [TensorFlow 2 Detection Model Zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md). They provide a collection of detection models pre-trained on the [COCO 2017 dataset](https://cocodataset.org/).
| Model name | Speed (ms) | COCO mAP | Outputs |
| ----------- | ----------- | -------- | ------- |
| [SSD MobileNet V2 FPNLite 640x640](http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8.tar.gz) | 39 | 28.2 | Boxes |
------
#### Metrics
After training for 8000 steps:
```
{'Loss/classification_loss': 0.06144937,
'Loss/localization_loss': 0.017765515,
'Loss/regularization_loss': 0.12342198,
'Loss/total_loss': 0.20263687,
'learning_rate': 0.07603875}
```
Validation Detection Metrics:```
Accumulating evaluation results...
DONE (t=0.06s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.343
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.698
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.399
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.700
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.515
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.313
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.348
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.449
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.552
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.700
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.693
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.511
```
#### Tensor Board Metrics
![tensorboard.png](https://github.com/myatmyintzuthin/face_mask_detection/blob/main/assets/tensorboard.png)
------
#### References
[TensorFlow Object Detection API Tutorial](https://readthedocs.org/projects/tensorflow-object-detection-api-tutorial/) \
[TensorFlow 2 Detection Model Zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md)