Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/mybigday/llama.rn

React Native binding of llama.cpp
https://github.com/mybigday/llama.rn

android ios llama llama-cpp llm react-native

Last synced: 29 days ago
JSON representation

React Native binding of llama.cpp

Awesome Lists containing this project

README

        

# llama.rn

[![Actions Status](https://github.com/mybigday/llama.rn/workflows/CI/badge.svg)](https://github.com/mybigday/llama.rn/actions)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![npm](https://img.shields.io/npm/v/llama.rn.svg)](https://www.npmjs.com/package/llama.rn/)

React Native binding of [llama.cpp](https://github.com/ggerganov/llama.cpp).

[llama.cpp](https://github.com/ggerganov/llama.cpp): Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++

## Installation

```sh
npm install llama.rn
```

#### iOS

Please re-run `npx pod-install` again.

#### Android

Add proguard rule if it's enabled in project (android/app/proguard-rules.pro):

```proguard
# llama.rn
-keep class com.rnllama.** { *; }
```

## Obtain the model

You can search HuggingFace for available models (Keyword: [`GGUF`](https://huggingface.co/search/full-text?q=GGUF&type=model)).

For get a GGUF model or quantize manually, see [`Prepare and Quantize`](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#prepare-and-quantize) section in llama.cpp.

## Usage

```js
import { initLlama } from 'llama.rn'

// Initial a Llama context with the model (may take a while)
const context = await initLlama({
model: 'file://',
use_mlock: true,
n_ctx: 2048,
n_gpu_layers: 1, // > 0: enable Metal on iOS
// embedding: true, // use embedding
})

const stopWords = ['', '<|end|>', '<|eot_id|>', '<|end_of_text|>', '<|im_end|>', '<|EOT|>', '<|END_OF_TURN_TOKEN|>', '<|end_of_turn|>', '<|endoftext|>']

// Do chat completion
const msgResult = await context.completion(
{
messages: [
{
role: 'system',
content: 'This is a conversation between user and assistant, a friendly chatbot.',
},
{
role: 'user',
content: 'Hello!',
},
],
n_predict: 100,
stop: stopWords,
// ...other params
},
(data) => {
// This is a partial completion callback
const { token } = data
},
)
console.log('Result:', msgResult.text)
console.log('Timings:', msgResult.timings)

// Or do text completion
const textResult = await context.completion(
{
prompt: 'This is a conversation between user and llama, a friendly chatbot. respond in simple markdown.\n\nUser: Hello!\nLlama:',
n_predict: 100,
stop: [...stopWords, 'Llama:', 'User:'],
// ...other params
},
(data) => {
// This is a partial completion callback
const { token } = data
},
)
console.log('Result:', textResult.text)
console.log('Timings:', textResult.timings)
```

The binding’s deisgn inspired by [server.cpp](https://github.com/ggerganov/llama.cpp/tree/master/examples/server) example in llama.cpp, so you can map its API to LlamaContext:

- `/completion` and `/chat/completions`: `context.completion(params, partialCompletionCallback)`
- `/tokenize`: `context.tokenize(content)`
- `/detokenize`: `context.detokenize(tokens)`
- `/embedding`: `context.embedding(content)`
- Other methods
- `context.loadSession(path)`
- `context.saveSession(path)`
- `context.stopCompletion()`
- `context.release()`

Please visit the [Documentation](docs/API) for more details.

You can also visit the [example](example) to see how to use it.

Run the example:

```bash
yarn && yarn bootstrap

# iOS
yarn example ios
# Use device
yarn example ios --device ""
# With release mode
yarn example ios --mode Release

# Android
yarn example android
# With release mode
yarn example android --mode release
```

This example used [react-native-document-picker](https://github.com/rnmods/react-native-document-picker) for select model.

- iOS: You can move the model to iOS Simulator, or iCloud for real device.
- Android: Selected file will be copied or downloaded to cache directory so it may be slow.

## Grammar Sampling

GBNF (GGML BNF) is a format for defining [formal grammars](https://en.wikipedia.org/wiki/Formal_grammar) to constrain model outputs in `llama.cpp`. For example, you can use it to force the model to generate valid JSON, or speak only in emojis.

You can see [GBNF Guide](https://github.com/ggerganov/llama.cpp/tree/master/grammars) for more details.

`llama.rn` provided a built-in function to convert JSON Schema to GBNF:

```js
import { initLlama, convertJsonSchemaToGrammar } from 'llama.rn'

const schema = {
/* JSON Schema, see below */
}

const context = await initLlama({
model: 'file://',
use_mlock: true,
n_ctx: 2048,
n_gpu_layers: 1, // > 0: enable Metal on iOS
// embedding: true, // use embedding
grammar: convertJsonSchemaToGrammar({
schema,
propOrder: { function: 0, arguments: 1 },
}),
})

const { text } = await context.completion({
prompt: 'Schedule a birthday party on Aug 14th 2023 at 8pm.',
})
console.log('Result:', text)
// Example output:
// {"function": "create_event","arguments":{"date": "Aug 14th 2023", "time": "8pm", "title": "Birthday Party"}}
```

JSON Schema example (Define function get_current_weather / create_event / image_search)

```json5
{
oneOf: [
{
type: 'object',
name: 'get_current_weather',
description: 'Get the current weather in a given location',
properties: {
function: {
const: 'get_current_weather',
},
arguments: {
type: 'object',
properties: {
location: {
type: 'string',
description: 'The city and state, e.g. San Francisco, CA',
},
unit: {
type: 'string',
enum: ['celsius', 'fahrenheit'],
},
},
required: ['location'],
},
},
},
{
type: 'object',
name: 'create_event',
description: 'Create a calendar event',
properties: {
function: {
const: 'create_event',
},
arguments: {
type: 'object',
properties: {
title: {
type: 'string',
description: 'The title of the event',
},
date: {
type: 'string',
description: 'The date of the event',
},
time: {
type: 'string',
description: 'The time of the event',
},
},
required: ['title', 'date', 'time'],
},
},
},
{
type: 'object',
name: 'image_search',
description: 'Search for an image',
properties: {
function: {
const: 'image_search',
},
arguments: {
type: 'object',
properties: {
query: {
type: 'string',
description: 'The search query',
},
},
required: ['query'],
},
},
},
],
}
```

Converted GBNF looks like

```bnf
space ::= " "?
0-function ::= "\"get_current_weather\""
string ::= "\"" (
[^"\\] |
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
)* "\"" space
0-arguments-unit ::= "\"celsius\"" | "\"fahrenheit\""
0-arguments ::= "{" space "\"location\"" space ":" space string "," space "\"unit\"" space ":" space 0-arguments-unit "}" space
0 ::= "{" space "\"function\"" space ":" space 0-function "," space "\"arguments\"" space ":" space 0-arguments "}" space
1-function ::= "\"create_event\""
1-arguments ::= "{" space "\"date\"" space ":" space string "," space "\"time\"" space ":" space string "," space "\"title\"" space ":" space string "}" space
1 ::= "{" space "\"function\"" space ":" space 1-function "," space "\"arguments\"" space ":" space 1-arguments "}" space
2-function ::= "\"image_search\""
2-arguments ::= "{" space "\"query\"" space ":" space string "}" space
2 ::= "{" space "\"function\"" space ":" space 2-function "," space "\"arguments\"" space ":" space 2-arguments "}" space
root ::= 0 | 1 | 2
```

## Mock `llama.rn`

We have provided a mock version of `llama.rn` for testing purpose you can use on Jest:

```js
jest.mock('llama.rn', () => require('llama.rn/jest/mock'))
```

## NOTE

iOS:

- The [Extended Virtual Addressing](https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_kernel_extended-virtual-addressing) capability is recommended to enable on iOS project.
- Metal:
- We have tested to know some devices is not able to use Metal ('params.n_gpu_layers > 0') due to llama.cpp used SIMD-scoped operation, you can check if your device is supported in [Metal feature set tables](https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf), Apple7 GPU will be the minimum requirement.
- It's also not supported in iOS simulator due to [this limitation](https://developer.apple.com/documentation/metal/developing_metal_apps_that_run_in_simulator#3241609), we used constant buffers more than 14.

Android:

- Currently only supported arm64-v8a / x86_64 platform, this means you can't initialize a context on another platforms. The 64-bit platform are recommended because it can allocate more memory for the model.
- No integrated any GPU backend yet.

## Contributing

See the [contributing guide](CONTRIBUTING.md) to learn how to contribute to the repository and the development workflow.

## License

MIT

---

Made with [create-react-native-library](https://github.com/callstack/react-native-builder-bob)

---






Built and maintained by BRICKS.