https://github.com/myles-lewis/glmmseq
Gene-level general linear mixed model
https://github.com/myles-lewis/glmmseq
bioinformatics cran differential-gene-expression gene-expression glmm mixed-models transcriptomics
Last synced: 3 months ago
JSON representation
Gene-level general linear mixed model
- Host: GitHub
- URL: https://github.com/myles-lewis/glmmseq
- Owner: myles-lewis
- License: other
- Created: 2020-08-12T11:04:35.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2025-10-01T19:55:16.000Z (4 months ago)
- Last Synced: 2025-10-04T05:48:45.366Z (4 months ago)
- Topics: bioinformatics, cran, differential-gene-expression, gene-expression, glmm, mixed-models, transcriptomics
- Language: R
- Homepage: https://myles-lewis.github.io/glmmSeq/
- Size: 13.9 MB
- Stars: 23
- Watchers: 4
- Forks: 10
- Open Issues: 12
-
Metadata Files:
- Readme: README.md
- Changelog: NEWS.md
- License: LICENSE
Awesome Lists containing this project
README
[](https://lifecycle.r-lib.org/articles/stages.html)
[](https://choosealicense.com/licenses/mit/)
[](https://cran.r-project.org/package=glmmSeq)
[](https://GitHub.com/myles-lewis/glmmSeq/issues/)
[](https://GitHub.com/myles-lewis/glmmSeq/tags/)
[](https://CRAN.R-project.org/package=glmmSeq)
# glmmSeq

This R package is designed to model gene expression with a general linear mixed model (GLMM). This allows us to include random effects as well as fixed effects. For the purpose of the package we use the `glmer` function from the [`lme4`](https://CRAN.R-project.org/package=lme4)
package which fits a GLMM.
This package focuses in particular on changes in genes expression between different response or treatment groups over time.
# Loading the package
### From CRAN
```
install.packages("glmmSeq")
```
### From Github
```
devtools::install_github("myles-lewis/glmmSeq")
```
### Locally
You can also download the source directory and load the functions individually:
```
functions = list.files("./R", full.names = TRUE)
invisible(lapply(functions, source))
```
But you will need to load in the additional libraries then:
```
# Install CRAN packages
invisible(lapply(c("MASS", "car", "ggplot2", "ggpubr", "lme4",
"lmerTest", "methods", "parallel", "plotly",
"pbapply", "pbmcapply"),
function(p){
if(! p %in% rownames(installed.packages())) {
install.packages(p)
}
library(p, character.only=TRUE)
}))
# Install BioConductor packages
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
invisible(lapply(c("qvalue"), function(p){
if(! p %in% rownames(installed.packages())) BiocManager::install(p)
library(p, character.only=TRUE)
}))
```
# Example script
For examples see the [vignette](https://myles-lewis.github.io/glmmSeq/articles/glmmSeq.html).
# Reference
glmmSeq was developed by the bioinformatics team at the [Experimental Medicine & Rheumatology department](https://www.qmul.ac.uk/whri/emr/) at Queen Mary University London.
If you use this package please cite as:
```
citation("glmmSeq")
## To cite package ‘glmmSeq’ in publications use:
##
## Myles Lewis, Katriona Goldmann, Elisabetta Sciacca, Cankut Cubuk and Anna Surace (2021).
## glmmSeq: General Linear Mixed Models for Gene-level Differential Expression.
## R package version 0.5.4. https://github.com/myles-lewis/glmmSeq
##
## A BibTeX entry for LaTeX users is
##
## @Manual{,
## title = {glmmSeq: General Linear Mixed Models for Gene-level Differential Expression},
## author = {Myles Lewis and Katriona Goldmann and Elisabetta Sciacca and Cankut Cubuk and Anna Surace},
## year = {2022},
## note = {R package version 0.5.4},
## url = {https://github.com/myles-lewis/glmmSeq},
## }
```