An open API service indexing awesome lists of open source software.

https://github.com/myles-lewis/glmmseq

Gene-level general linear mixed model
https://github.com/myles-lewis/glmmseq

bioinformatics cran differential-gene-expression gene-expression glmm mixed-models transcriptomics

Last synced: 3 months ago
JSON representation

Gene-level general linear mixed model

Awesome Lists containing this project

README

          

[![Lifecycle: Maturing](https://img.shields.io/badge/lifecycle-stable-blue.svg)](https://lifecycle.r-lib.org/articles/stages.html)
[![License: MIT](https://img.shields.io/badge/License-MIT-mediumpurple.svg)](https://choosealicense.com/licenses/mit/)
[![CRAN status](https://www.r-pkg.org/badges/version/glmmSeq)](https://cran.r-project.org/package=glmmSeq)
[![GitHub issues](https://img.shields.io/github/issues/myles-lewis/glmmSeq.svg)](https://GitHub.com/myles-lewis/glmmSeq/issues/)
[![GitHub
tag](https://img.shields.io/github/tag/myles-lewis/glmmSeq.svg)](https://GitHub.com/myles-lewis/glmmSeq/tags/)
[![Downloads](https://cranlogs.r-pkg.org/badges/grand-total/glmmSeq?color=orange)](https://CRAN.R-project.org/package=glmmSeq)

# glmmSeq

This R package is designed to model gene expression with a general linear mixed model (GLMM). This allows us to include random effects as well as fixed effects. For the purpose of the package we use the `glmer` function from the [`lme4`](https://CRAN.R-project.org/package=lme4)
package which fits a GLMM.

This package focuses in particular on changes in genes expression between different response or treatment groups over time.

# Loading the package

### From CRAN

```
install.packages("glmmSeq")
```

### From Github

```
devtools::install_github("myles-lewis/glmmSeq")
```

### Locally

You can also download the source directory and load the functions individually:

```
functions = list.files("./R", full.names = TRUE)
invisible(lapply(functions, source))
```

But you will need to load in the additional libraries then:

```
# Install CRAN packages
invisible(lapply(c("MASS", "car", "ggplot2", "ggpubr", "lme4",
"lmerTest", "methods", "parallel", "plotly",
"pbapply", "pbmcapply"),
function(p){
if(! p %in% rownames(installed.packages())) {
install.packages(p)
}
library(p, character.only=TRUE)
}))

# Install BioConductor packages
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
invisible(lapply(c("qvalue"), function(p){
if(! p %in% rownames(installed.packages())) BiocManager::install(p)
library(p, character.only=TRUE)
}))
```

# Example script

For examples see the [vignette](https://myles-lewis.github.io/glmmSeq/articles/glmmSeq.html).

# Reference

glmmSeq was developed by the bioinformatics team at the [Experimental Medicine & Rheumatology department](https://www.qmul.ac.uk/whri/emr/) at Queen Mary University London.

If you use this package please cite as:

```
citation("glmmSeq")

## To cite package ‘glmmSeq’ in publications use:
##
## Myles Lewis, Katriona Goldmann, Elisabetta Sciacca, Cankut Cubuk and Anna Surace (2021).
## glmmSeq: General Linear Mixed Models for Gene-level Differential Expression.
## R package version 0.5.4. https://github.com/myles-lewis/glmmSeq
##
## A BibTeX entry for LaTeX users is
##
## @Manual{,
## title = {glmmSeq: General Linear Mixed Models for Gene-level Differential Expression},
## author = {Myles Lewis and Katriona Goldmann and Elisabetta Sciacca and Cankut Cubuk and Anna Surace},
## year = {2022},
## note = {R package version 0.5.4},
## url = {https://github.com/myles-lewis/glmmSeq},
## }
```