Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mystic123/tensorflow-yolo-v3
Implementation of YOLO v3 object detector in Tensorflow (TF-Slim)
https://github.com/mystic123/tensorflow-yolo-v3
deep-learning detector object-detection tensorflow tensorflow-yolo yolo yolov3
Last synced: about 2 months ago
JSON representation
Implementation of YOLO v3 object detector in Tensorflow (TF-Slim)
- Host: GitHub
- URL: https://github.com/mystic123/tensorflow-yolo-v3
- Owner: mystic123
- License: apache-2.0
- Created: 2018-05-30T07:48:05.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2023-05-15T12:29:48.000Z (over 1 year ago)
- Last Synced: 2024-08-02T16:03:38.812Z (5 months ago)
- Topics: deep-learning, detector, object-detection, tensorflow, tensorflow-yolo, yolo, yolov3
- Language: Python
- Homepage: https://medium.com/@pawekapica_31302/implementing-yolo-v3-in-tensorflow-tf-slim-c3c55ff59dbe
- Size: 69.3 KB
- Stars: 894
- Watchers: 44
- Forks: 353
- Open Issues: 66
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- awesome-yolo-object-detection - mystic123/tensorflow-yolo-v3 - yolo-v3?style=social"/> : Implementation of YOLO v3 object detector in Tensorflow (TF-Slim). (Other Versions of YOLO)
- awesome-yolo-object-detection - mystic123/tensorflow-yolo-v3 - yolo-v3?style=social"/> : Implementation of YOLO v3 object detector in Tensorflow (TF-Slim). (Other Versions of YOLO)
README
# tensorflow-yolo-v3
Implementation of YOLO v3 object detector in Tensorflow (TF-Slim). Full tutorial can be found [here](https://medium.com/@pawekapica_31302/implementing-yolo-v3-in-tensorflow-tf-slim-c3c55ff59dbe).
Tested on Python 3.5, Tensorflow 1.11.0 on Ubuntu 16.04.
## Todo list:
- [x] YOLO v3 architecture
- [x] Basic working demo
- [x] Weights converter (util for exporting loaded COCO weights as TF checkpoint)
- [ ] Training pipeline
- [ ] More backends## How to run the demo:
To run demo type this in the command line:1. Download COCO class names file: `wget https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names`
2. Download and convert model weights:
1. Download binary file with desired weights:
1. Full weights: `wget https://pjreddie.com/media/files/yolov3.weights`
1. Tiny weights: `wget https://pjreddie.com/media/files/yolov3-tiny.weights`
1. SPP weights: `wget https://pjreddie.com/media/files/yolov3-spp.weights`
2. Run `python ./convert_weights.py` and `python ./convert_weights_pb.py`
3. Run `python ./demo.py --input_img --output_img --frozen_model `####Optional Flags
1. convert_weights:
1. `--class_names`
1. Path to the class names file
2. `--weights_file`
1. Path to the desired weights file
3. `--data_format`
1. `NCHW` (gpu only) or `NHWC`
4. `--tiny`
1. Use yolov3-tiny
5. `--spp`
1. Use yolov3-spp
6. `--ckpt_file`
1. Output checkpoint file
2. convert_weights_pb.py:
1. `--class_names`
1. Path to the class names file
2. `--weights_file`
1. Path to the desired weights file
3. `--data_format`
1. `NCHW` (gpu only) or `NHWC`
4. `--tiny`
1. Use yolov3-tiny
5. `--spp`
1. Use yolov3-spp
6. `--output_graph`
1. Location to write the output .pb graph to
3. demo.py
1. `--class_names`
1. Path to the class names file
2. `--weights_file`
1. Path to the desired weights file
3. `--data_format`
1. `NCHW` (gpu only) or `NHWC`
4. `--ckpt_file`
1. Path to the checkpoint file
5. `--frozen_model`
1. Path to the frozen model
6. `--conf_threshold`
1. Desired confidence threshold
7. `--iou_threshold`
1. Desired iou threshold
8. `--gpu_memory_fraction`
1. Fraction of gpu memory to work with