An open API service indexing awesome lists of open source software.

https://github.com/nabilshadman/monte-carlo-simulation-equity-trading

Monte Carlo simulation toolkit for equity trading, utilizing GBM and Pareto distributions to model price movements and trading volumes
https://github.com/nabilshadman/monte-carlo-simulation-equity-trading

applied-mathematics applied-probability computational-finance computational-science equity-trading geometric-brownian-motion lognormal-distribution mathematical-finance monte-carlo pareto-distributions quantitative-finance scientific-computing

Last synced: 24 days ago
JSON representation

Monte Carlo simulation toolkit for equity trading, utilizing GBM and Pareto distributions to model price movements and trading volumes

Awesome Lists containing this project

README

        

# Monte Carlo Simulation in Equity Trading

[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
![Python](https://img.shields.io/badge/python-3.x-blue.svg)
![Jupyter](https://img.shields.io/badge/Jupyter-Notebook-orange.svg)

## Overview
This project explores the application of [**Monte Carlo**](https://en.wikipedia.org/wiki/Monte_Carlo_method) simulations in equity trading, leveraging statistical distributions to model financial behaviors.

The methodologies implemented include:
- **Geometric Brownian Motion (GBM)**: Simulating equity price paths
- **Pareto Distribution**: Simulating equity trading volumes

Geometric Brownian Motion (GBM)
Pareto Distribution

Simulated equity price paths using GBM
Simulated equity trading volume using Pareto distribution

Simulating equity price paths
Simulating equity trading volumes

### Tech Stack
- **Python Libraries**:
- scipy
- numpy
- pandas
- matplotlib
- **Development Environment**: Jupyter Notebook
- **Version Control**: GitHub

## Notebooks

### 1. [**Lognormal Distribution**](https://github.com/nabilshadman/monte-carlo-simulation-equity-trading/blob/main/lognormal_distribution.ipynb)
Provides a Python implementation of the **lognormal distribution**, a key component in modeling financial price movements.
- Visualizes histogram, Probability Density Function (PDF), and Cumulative Distribution Function (CDF).
- Foundation for simulating equity prices.

### 2. [**Pareto Distribution**](https://github.com/nabilshadman/monte-carlo-simulation-equity-trading/blob/main/pareto_distribution.ipynb)
Implements the **Pareto distribution**, often used for modeling trading volumes.
- Visualizes histogram and PDF.
- Forms the basis for simulating trading volume.

### 3. [**Simulating Equity Prices**](https://github.com/nabilshadman/monte-carlo-simulation-equity-trading/blob/main/simulating_equity_prices.ipynb)
Simulates **equity price paths** using the GBM process.
- Explains the relationship between periodic returns and lognormal price distributions.
- Uses Python’s NumPy for efficient computation.

### 4. [**Simulating Trading Volume**](https://github.com/nabilshadman/monte-carlo-simulation-equity-trading/blob/main/simulating_trading_volume.ipynb)
Simulates **trading volumes** with the Pareto distribution.
- Generates realistic equity volumes lacking autocorrelation and price dependency.

---

## Environment

### Recommended Setup
For seamless execution, use the [**Anaconda Distribution**](https://docs.anaconda.com/free/anaconda/index.html), which simplifies dependency management and ensures compatibility.

1. Download and install Anaconda from [here](https://www.anaconda.com/download).
2. Open **Anaconda Navigator** and launch Jupyter Notebook.
3. Navigate to the project directory to begin.

---

## Execution

### Running the Notebooks
1. Open a notebook in Jupyter.
2. In the toolbar, select **Run** → **Run All Cells** to execute sequentially.

### Suggested Order
For those new to Monte Carlo simulations in finance, follow this order:
1. [**lognormal_distribution.ipynb**](https://github.com/nabilshadman/monte-carlo-simulation-equity-trading/blob/main/lognormal_distribution.ipynb)
2. [**pareto_distribution.ipynb**](https://github.com/nabilshadman/monte-carlo-simulation-equity-trading/blob/main/pareto_distribution.ipynb)
3. [**simulating_equity_prices.ipynb**](https://github.com/nabilshadman/monte-carlo-simulation-equity-trading/blob/main/simulating_equity_prices.ipynb)
4. [**simulating_trading_volume.ipynb**](https://github.com/nabilshadman/monte-carlo-simulation-equity-trading/blob/main/simulating_trading_volume.ipynb)

For detailed instructions, refer to the [Jupyter documentation](https://docs.jupyter.org/en/latest/).

## Contributing

We welcome contributions! Please feel free to submit pull requests or open issues for any improvements.

## License

This project is licensed under the MIT License - see the [LICENSE](./LICENSE.txt) file for details.

## Citation

If you use this work in your research, please cite:

```bibtex
@misc{monte-carlo-equity-trading,
author = {Shadman, Nabil},
title = {Monte Carlo Simulation in Equity Trading},
year = {2023},
publisher = {GitHub},
url = {https://github.com/nabilshadman/monte-carlo-simulation-equity-trading/}
}
```