Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nachiket273/micrograd_rs
A Beginner's implementation of Andrej karpathy's micrograd in Rust.
https://github.com/nachiket273/micrograd_rs
micrograd mlp neural-networks relu rust study-project
Last synced: about 19 hours ago
JSON representation
A Beginner's implementation of Andrej karpathy's micrograd in Rust.
- Host: GitHub
- URL: https://github.com/nachiket273/micrograd_rs
- Owner: nachiket273
- License: mit
- Created: 2024-08-28T20:28:45.000Z (2 months ago)
- Default Branch: main
- Last Pushed: 2024-09-19T18:35:29.000Z (about 2 months ago)
- Last Synced: 2024-10-31T11:48:50.890Z (6 days ago)
- Topics: micrograd, mlp, neural-networks, relu, rust, study-project
- Language: Rust
- Homepage:
- Size: 33.2 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# micrograd_rs
[![Crate](https://img.shields.io/crates/v/micrograd_rs_nt.svg)](https://crates.io/crates/micrograd_rs_nt)
A Rust Beginner's implementation of [Andrej karpathy's micrograd](https://github.com/karpathy/micrograd).
Here's [Link](https://www.youtube.com/watch?v=VMj-3S1tku0) to the YouTube video.
Also thanks to [micrograd-rust](https://github.com/sloganking/micrograd-rust) for reference implementation in rust.## The current implementation is limited to:
==============================================
* scalar valued autograd
* Implementation of forward and backward pass for arithmetic operations and power operation.
* Implementation of forward and backward pass for activation functions - tanh and relu.## Sample Output:
===============================================
![Sample Training Output for MLP](./img/train.png)
## TO-DO:
==========================================
* graph visulization using libraries like [graphviz](https://graphviz.org/download/)
* Implementation of Tensor type library from scratch
* Improve implementation of MLP, activations etc for Tensors.