Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nachiket92/PGP
Code for "Multimodal Trajectory Prediction Conditioned on Lane-Graph Traversals," CoRL 2021.
https://github.com/nachiket92/PGP
autonomous-vehicles nuscenes pytorch trajectory-prediction
Last synced: 2 months ago
JSON representation
Code for "Multimodal Trajectory Prediction Conditioned on Lane-Graph Traversals," CoRL 2021.
- Host: GitHub
- URL: https://github.com/nachiket92/PGP
- Owner: nachiket92
- License: mit
- Created: 2021-12-03T18:58:49.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2022-09-13T22:40:02.000Z (over 2 years ago)
- Last Synced: 2024-08-01T03:42:39.728Z (5 months ago)
- Topics: autonomous-vehicles, nuscenes, pytorch, trajectory-prediction
- Language: Python
- Homepage: https://proceedings.mlr.press/v164/deo22a.html
- Size: 12.6 MB
- Stars: 208
- Watchers: 5
- Forks: 35
- Open Issues: 12
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multimodal-trajectory-prediction-conditioned/trajectory-prediction-on-nuscenes)](https://paperswithcode.com/sota/trajectory-prediction-on-nuscenes?p=multimodal-trajectory-prediction-conditioned)
# Multimodal Trajectory Prediction Conditioned on Lane-Graph Traversals
![](https://github.com/nachiket92/PGP/blob/main/assets/intro.gif)
This repository contains code for ["Multimodal trajectory prediction conditioned on lane-graph traversals"](https://proceedings.mlr.press/v164/deo22a.html) by Nachiket Deo, Eric M. Wolff and Oscar Beijbom, presented at CoRL 2021.
```bibtex
@inproceedings{deo2021multimodal,
title={Multimodal Trajectory Prediction Conditioned on Lane-Graph Traversals},
author={Deo, Nachiket and Wolff, Eric and Beijbom, Oscar},
booktitle={5th Annual Conference on Robot Learning},
year={2021}
}
```**Note:** While I'm one of the authors of the paper, this is an independent re-implementation of the original code developed during an internship at Motional. The code follows the implementation details in the paper. Hope this helps!
-Nachiket## Installation
1. Clone this repository
2. Set up a new conda environment
``` shell
conda create --name pgp python=3.7
```3. Install dependencies
```shell
conda activate pgp# nuScenes devkit
pip install nuscenes-devkit# Pytorch: The code has been tested with Pytorch 1.7.1, CUDA 10.1, but should work with newer versions
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch# Additional utilities
pip install ray
pip install psutil
pip install positional-encodings==5.0.0
pip install imageio
pip install tensorboard
```## Dataset
1. Download the [nuScenes dataset](https://www.nuscenes.org/download). For this project we just need the following.
- Metadata for the Trainval split (v1.0)
- Map expansion pack (v1.3)2. Organize the nuScenes root directory as follows
```plain
└── nuScenes/
├── maps/
| ├── basemaps/
| ├── expansion/
| ├── prediction/
| ├── 36092f0b03a857c6a3403e25b4b7aab3.png
| ├── 37819e65e09e5547b8a3ceaefba56bb2.png
| ├── 53992ee3023e5494b90c316c183be829.png
| └── 93406b464a165eaba6d9de76ca09f5da.png
└── v1.0-trainval
├── attribute.json
├── calibrated_sensor.json
...
└── visibility.json
```3. Run the following script to extract pre-processed data. This speeds up training significantly.
```shell
python preprocess.py -c configs/preprocess_nuscenes.yml -r path/to/nuScenes/root/directory -d path/to/directory/with/preprocessed/data
```## Inference
You can download the trained model weights using [this link](https://drive.google.com/file/d/1lHwC6I6VRLT-BLs9gRGu_xMaIupMlbtS/view?usp=sharing).
To evaluate on the nuScenes val set run the following script. This will generate a text file with evaluation metrics at the specified output directory. The results should match the [benchmark entry](https://eval.ai/web/challenges/challenge-page/591/leaderboard/1659) on Eval.ai.
```shell
python evaluate.py -c configs/pgp_gatx2_lvm_traversal.yml -r path/to/nuScenes/root/directory -d path/to/directory/with/preprocessed/data -o path/to/output/directory -w path/to/trained/weights
```To visualize predictions run the following script. This will generate gifs for a set of instance tokens (track ids) from nuScenes val at the specified output directory.
```shell
python visualize.py -c configs/pgp_gatx2_lvm_traversal.yml -r path/to/nuScenes/root/directory -d path/to/directory/with/preprocessed/data -o path/to/output/directory -w path/to/trained/weights
```## Training
To train the model from scratch, run
```shell
python train.py -c configs/pgp_gatx2_lvm_traversal.yml -r path/to/nuScenes/root/directory -d path/to/directory/with/preprocessed/data -o path/to/output/directory -n 100
```The training script will save training checkpoints and tensorboard logs in the output directory.
To launch tensorboard, run
```shell
tensorboard --logdir=path/to/output/directory/tensorboard_logs
```