Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/nagadomi/kaggle-cifar10-torch7

Code for Kaggle-CIFAR10 competition. 5th place.
https://github.com/nagadomi/kaggle-cifar10-torch7

kaggle

Last synced: 5 days ago
JSON representation

Code for Kaggle-CIFAR10 competition. 5th place.

Awesome Lists containing this project

README

        

# Kaggle CIFAR-10

Code for CIFAR-10 competition. http://www.kaggle.com/c/cifar-10

## Summary
| | Description |
|-------------------|----------------------------------------------------------------------------------------|
| Model | Very Deep Convolutional Networks with 3x3 kernel [1] |
| Data Augmentation | cropping, horizontal reflection [2] and scaling. see lib/data_augmentation.lua |
| Preprocessing | Global Contrast Normalization (GCN) and ZCA whitening. see lib/preprocessing.lua |
| Training Time | 20 hours on GTX760. |
| Prediction Time | 2.5 hours on GTX760. |
| Result | 0.93320 (single model). 0.94150 (average 6 models)|

## Neural Network Configurations

| Layer type | Parameters |
|------------------|-------------------------------------------|
| input | size: 24x24, channel: 3 |
| convolution | kernel: 3x3, channel: 64, padding: 1 |
| relu | |
| convolution | kernel: 3x3, channel: 64, padding: 1 |
| relu | |
| max pooling | kernel: 2x2, stride: 2 |
| dropout | rate: 0.25 |
| convolution | kernel: 3x3, channel: 128, padding: 1 |
| relu | |
| convolution | kernel: 3x3, channel: 128, padding: 1 |
| relu | |
| max pooling | kernel: 2x2, stride: 2 |
| dropout | rate: 0.25 |
| convolution | kernel: 3x3, channel: 256, padding: 1 |
| relu | |
| convolution | kernel: 3x3, channel: 256, padding: 1 |
| relu | |
| convolution | kernel: 3x3, channel: 256, padding: 1 |
| relu | |
| convolution | kernel: 3x3, channel: 256, padding: 1 |
| relu | |
| max pooling | kernel: 2x2, stride: 2 |
| dropout | rate: 0.25 |
| linear | channel: 1024 |
| relu | |
| dropout | rate: 0.5 |
| linear | channel: 1024 |
| relu | |
| dropout | rate: 0.5 |
| linear | channel: 10 |
| softmax | |

## Developer Environment

- Ubuntu 14.04
- 15GB RAM (This codebase can run on g2.2xlarge!)
- CUDA (GTX760 or more higher GPU)
- [Torch7](http://torch.ch/) latest
- [cuda-convnet2.torch](https://github.com/soumith/cuda-convnet2.torch)

## Installation
(This document is outdated. See: [Getting started with Torch](http://torch.ch/docs/getting-started.html))

Install CUDA (on Ubuntu 14.04):

apt-get install nvidia-331
apt-get install nvidia-cuda-toolkit

Install Torch7 (see [Torch (easy) install](https://github.com/torch/ezinstall)):

curl -s https://raw.githubusercontent.com/torch/ezinstall/master/install-all | bash

Install(or upgrade) dependency packages:

luarocks install torch
luarocks install nn
luarocks install cutorch
luarocks install cunn
luarocks install https://raw.githubusercontent.com/soumith/cuda-convnet2.torch/master/ccn2-scm-1.rockspec

### Checking CUDA environment

th cuda_test.lua

Please check your Torch7/CUDA environment when this code fails.

### Convert dataset

Place the [data files](http://www.kaggle.com/c/cifar-10/data) into a subfolder ./data.

ls ./data
test train trainLabels.csv
-
th convert_data.lua

## Local testing

th validate.lua

dataset:

| train | test |
| ------- | ----------- |
| 1-40000 | 40001-50000 |

## Generating the submission.txt

th train.lua
th predict.lua

## MISC

### Model Averaging

Training with different seed parameter for each nodes.

(same model, same data, different initial weights, different training order)

th train.lua -seed 11
th train.lua -seed 12
...
th train.lua -seed 16

Mount the `models` directory for each nodes. for example, `ec2/node1`, `ec2/node2`, .., `ec2/node6`.

Edit the path of model file in `predict_averaging.lua`.

Run the prediction command.

th predict_averaging.lua

### Network In Network

`./nin_model.lua` is an implementation of Network In Network [3].
This model gives score of 0.92400.

My NIN implementation is 2-layer NIN. Its differ from [mavenlin's implementation](https://gist.github.com/mavenlin/e56253735ef32c3c296d).
I tried to implement the mavenlin's 3-layer NIN. However, I did not get good result.

My implementation of 3-layer NIN is [here](https://gist.github.com/nagadomi/15849fb2711de78c6bf6).

### Bug

`global_contrast_normalization` in `./lib/preprocessing.lua` is incorrect implementation (This function is just z-score). but I was using this implementation in the competition.

## Figure

data augmentation + preprocessing

![data-augmentation-preprocessing](https://raw.githubusercontent.com/nagadomi/kaggle-cifar10-torch7/master/figure/zca.png)

## References
- [1] Karen Simonyan, Andrew Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition", [link](http://arxiv.org/abs/1409.1556)
- [2] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks", [link](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks)
- [3] Min Lin, Qiang Chen, Shuicheng Yan, "Network In Network", [link](http://arxiv.org/abs/1312.4400)
- [4] R. Collobert, K. Kavukcuoglu, C. Farabet, "Torch7: A Matlab-like Environment for Machine Learning"