An open API service indexing awesome lists of open source software.

https://github.com/nahumsa/variational-autoencoder

Notebooks with examples using variational autoencoders.
https://github.com/nahumsa/variational-autoencoder

Last synced: about 2 months ago
JSON representation

Notebooks with examples using variational autoencoders.

Awesome Lists containing this project

README

        

# Variational Autoencoder

In order to use the code on this repository, install the dependencies
using conda:

- conda env create -f environment.yml

- source activate VAE_env

To put this environtmen on your jupyter notebook environment you need to type the following comands:

- conda install jupyter

- conda install nb_conda

- conda install ipykernel

- python -m ipykernel install --user --name VAE_env

-----------------------------------------------------------------

Examples using a (Beta-)Variational autoencoder.

- [MNIST with Beta-Variational Autoencoder using Tensorflow](https://github.com/nahumsa/Variational-Autoencoder/blob/master/Beta-VAE%20MNIST%20Tensorflow.ipynb)

- [MNIST with Beta-Variational Autoencoder using Keras.](https://github.com/nahumsa/Variational-Autoencoder/blob/master/VAE%20with%20Keras.ipynb)

- [Dsprites with Variational Autoencoder using Keras](https://github.com/nahumsa/Variational-Autoencoder/blob/master/VAE%20with%20Keras%20-%20Dsprites.ipynb)

- [Dsprites traversals with Variational Autoencoder using Keras](https://github.com/nahumsa/Variational-Autoencoder/blob/master/BETA-VAE%20with%20Keras%20Dsprites%20-%20Traversals.ipynb)

- [Dsprites positions with Variational Autoencoder using Keras](https://github.com/nahumsa/Variational-Autoencoder/blob/master/BETA-VAE%20with%20Keras%20Dsprites%20Positions.ipynb)

- [Representing Qubits using Beta-Variational autoencoder](https://github.com/nahumsa/Variational-Autoencoder/blob/master/B-VAE%20to%20represent%20Qubits.ipynb)