Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nalepae/pandarallel
A simple and efficient tool to parallelize Pandas operations on all available CPUs
https://github.com/nalepae/pandarallel
pandas parallel python
Last synced: 25 days ago
JSON representation
A simple and efficient tool to parallelize Pandas operations on all available CPUs
- Host: GitHub
- URL: https://github.com/nalepae/pandarallel
- Owner: nalepae
- License: bsd-3-clause
- Created: 2019-03-10T11:58:29.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2024-02-16T08:07:35.000Z (9 months ago)
- Last Synced: 2024-04-14T15:24:47.975Z (7 months ago)
- Topics: pandas, parallel, python
- Language: Python
- Homepage: https://nalepae.github.io/pandarallel
- Size: 1.08 MB
- Stars: 3,484
- Watchers: 26
- Forks: 200
- Open Issues: 91
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- best-of-python - GitHub - 40% open · ⏱️ 16.02.2024): (Data Containers & Dataframes)
- my-awesome-starred - nalepae/pandarallel - A simple and efficient tool to parallelize Pandas operations on all available CPUs (Python)
- awesome-list - Pandaral.lel - A simple and efficient tool to parallelize Pandas operations on all available CPUs. (Data Processing / Data Representation)
- awesome-python-machine-learning-resources - GitHub - 46% open · ⏱️ 24.08.2022): (数据容器和结构)
- awesome-systematic-trading - pandarallel - commit/nalepae/pandarallel/master) ![GitHub Repo stars](https://img.shields.io/github/stars/nalepae/pandarallel?style=social) | Python | - A simple and efficient tool to parallelize Pandas operations on all available CPUs (Basic Components / Python Performance Booster)
README
# Pandaral·lel
[![PyPI version fury.io](https://badge.fury.io/py/pandarallel.svg)](https://pypi.python.org/pypi/pandarallel/)
[![PyPI license](https://img.shields.io/pypi/l/pandarallel.svg)](https://pypi.python.org/pypi/pandarallel/)
[![PyPI download month](https://img.shields.io/pypi/dm/pandarallel.svg)](https://pypi.python.org/pypi/pandarallel/)| Without parallelization | ![Without Pandarallel](https://github.com/nalepae/pandarallel/blob/master/docs/progress_apply.gif?raw=true) |
| :----------------------: | ----------------------------------------------------------------------------------------------------------------- |
| **With parallelization** | ![With Pandarallel](https://github.com/nalepae/pandarallel/blob/master/docs/progress_parallel_apply.gif?raw=true) |**Pandaral.lel** provides a simple way to parallelize your pandas operations on all your
CPUs by changing only one line of code. It also displays progress bars.## **⚠️ Pandaral·lel is looking for a maintainer! ⚠️**
If you are interested, please contact me or open a GitHub issue.
## Maintainers
- [Manu NALEPA](https://github.com/nalepae)## Former maintainers (thanks a lot for your work!)
- [till-m](https://github.com/till-m)## Installation
```bash
pip install pandarallel [--upgrade] [--user]
```## Quickstart
```python
from pandarallel import pandarallelpandarallel.initialize(progress_bar=True)
# df.apply(func)
df.parallel_apply(func)
```## Usage
Be sure to check out the [documentation](https://nalepae.github.io/pandarallel).
## Examples
An example of each available `pandas` API is available:
- For [Mac & Linux](https://github.com/nalepae/pandarallel/blob/master/docs/examples_mac_linux.ipynb)
- For [Windows](https://github.com/nalepae/pandarallel/blob/master/docs/examples_windows.ipynb)