Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/napjon/krisk

Statistical Interactive Visualization with pandas+Jupyter integration on top of Echarts.
https://github.com/napjon/krisk

dashboard data-science data-visualization echarts interactive-charts jupyter-notebook python

Last synced: 28 days ago
JSON representation

Statistical Interactive Visualization with pandas+Jupyter integration on top of Echarts.

Awesome Lists containing this project

README

        

[![CircleCI](https://circleci.com/gh/napjon/krisk.svg?style=shield)](https://circleci.com/gh/napjon/krisk)
[![PyPI version](https://badge.fury.io/py/krisk.svg)](https://pypi.python.org/pypi/krisk/)
[![Coverage Status](https://img.shields.io/codecov/c/github/napjon/krisk/master.svg)](https://codecov.io/gh/napjon/krisk)
![svg](https://img.shields.io/github/license/napjon/krisk.svg)

# Overview

Krisk bring Echarts to Python Data Science Ecosystem, and helpful tools for high level statistical interactive visualization.

# Dependencies

* Python 3.5 (Python 2.7 should be supported, haven't test it yet)
* Jupyter Notebook 4.2.x
* Pandas 0.18.x
* Echarts 3.2.1 (built-in)

# Install
```Python
pip install jupyter pandas krisk
jupyter nbextension install --py krisk --sys-prefix
jupyter nbextension enable --py krisk --sys-prefix
```

# Tutorials

* [Introduction](http://nbviewer.jupyter.org/github/napjon/krisk/blob/master/notebooks/Intro.ipynb)
* [Themes and Colors](http://nbviewer.jupyter.org/github/napjon/krisk/blob/master/notebooks/themes-colors.ipynb)
* [Legend, Title, and Toolbox](http://nbviewer.jupyter.org/github/napjon/krisk/blob/master/notebooks/legend-title-toolbox.ipynb)
* [Resync Data and Reproducible Charts](http://nbviewer.jupyter.org/github/napjon/krisk/blob/master/notebooks/resync-reproducible.ipynb)
* [Declarative Visualization](http://nbviewer.jupyter.org/github/napjon/krisk/blob/master/notebooks/declarative-visualization.ipynb)
* [Waterfall and Barline Chart](http://nbviewer.jupyter.org/github/napjon/krisk/blob/master/notebooks/waterfall-barline.ipynb)
* [Tidy Plot: Time Series and Other Custom Data Manipulation](http://nbviewer.jupyter.org/github/napjon/krisk/blob/master/notebooks/tidy-plot.ipynb)

# What It Does

* Chart Integration with Jupyter Notebook, widgets, and Dashboard.
* Statistical interactive visualization
* Ability backed by Echarts (Toolbox, Transition, Tooltip, etc.)

# What It Doesn't Do

Krisk won't implement all features of Echarts. For more advanced usage, Krisk users can use JSON `option` (or HTML) output produced by Krisk to optimize in Javascript.

Only basic charts are supported for explanation visualization. The plan will support:

* More complex line, bar, scatter, and histogram.
* Geoscatter plot
* Time Series

Of course, contributions are welcome to support all chart types and advanced features.

# Motivation for Another Visualization Library

Krisk is targeted for building interactive dashboard application on top of two key components of Jupyter framework, [ipywidgets](https://ipywidgets.readthedocs.io/en/latest/) and [Jupyter Dashboard](https://github.com/jupyter-incubator/dashboards).

Krisk is also act as tool to support reproducible chart by utilizing pandas DataFrame as data input.

# How to Contribute

To contribute and unit tests your changes, please do the following,

1. Fork this repository
2. Clone this repo and do unit test,

```
pip install coverage pytest
git clone https://github.com/your-username/krisk.git
cd krisk
coverage run --source krisk -m py.test
```

# License

New BSD