Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/narumiruna/mlconfig


https://github.com/narumiruna/mlconfig

configuration deep-learning machine-learning pytorch

Last synced: 4 months ago
JSON representation

Awesome Lists containing this project

README

        

# mlconfig

## Installation

```shell
$ pip install mlconfig
```

## Example

[config.yaml](example/conf.yaml)
```yaml
num_classes: 50

model:
name: LeNet
num_classes: ${num_classes}

optimizer:
name: Adam
lr: 1.e-3
weight_decay: 1.e-4
```

[main.py](example/main.py)
```python
from torch import nn
from torch import optim

from mlconfig import instantiate
from mlconfig import load
from mlconfig import register

register(optim.Adam)

@register
class LeNet(nn.Module):

def __init__(self, num_classes):
super(LeNet, self).__init__()
self.num_classes = num_classes

self.features = nn.Sequential(
nn.Conv2d(1, 6, 5, bias=False),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
nn.Conv2d(6, 16, 5, bias=False),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
)

self.classifier = nn.Sequential(
nn.Linear(16 * 5 * 5, 120),
nn.ReLU(inplace=True),
nn.Linear(120, 84),
nn.ReLU(inplace=True),
nn.Linear(84, self.num_classes),
)

def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x

def main():
config = load('conf.yaml')

model = instantiate(config.model)
optimizer = instantiate(config.optimizer, model.parameters())

if __name__ == '__main__':
main()
```