Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nat-418/ask-ollama
Query Ollama models with RAG
https://github.com/nat-418/ask-ollama
Last synced: 13 days ago
JSON representation
Query Ollama models with RAG
- Host: GitHub
- URL: https://github.com/nat-418/ask-ollama
- Owner: nat-418
- Created: 2023-10-22T16:13:09.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2023-10-22T16:33:11.000Z (about 1 year ago)
- Last Synced: 2024-11-05T11:36:45.674Z (about 2 months ago)
- Language: JavaScript
- Size: 29.3 KB
- Stars: 6
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# ask-ollama
Query Ollama models with RAG## Description
This repository contains a program, `ask-ollama`,
that uses [retrieval-automated generation] with
[Ollama]-compatible [large language models] to provide
an advanced web-search command-line interface.## Usage
This program can be invoked using `npx ask-ollama `.
If you don't already have Ollama running locally, you can follow
the Docker steps in the Development section of this README to get
started and install some models. This also provides a ChatGPT-style
web UI without this project's RAG capabilities for testing.```bash
Usage
$ ask-ollamaOptions
--model, -m Specify model (defaults to llama2)Examples
$ ask-ollama 'What time is it now in Paris?' 'https://www.timeanddate.com/worldclock/france/paris'```
## Development
This tool uses the [LangChain] framework for JavaScript.
To hack on the project, follow these steps:
1. Install [Docker] and [Node.js]
2. Clone this repository
3. Run `$ docker-compose up` from inside this repository
4. Install a model using, e.g., `$ docker exec -it ollama-backend-1 ollama pull llama2`
5. Run `$ npm install` from inside this repository
6. Edit `ask-ollama.js`[retrieval-automated generation]: https://research.ibm.com/blog/retrieval-augmented-generation-RAG
[Ollama]: https://ollama.ai
[large language models]: https://ollama.ai/library
[LangChain]: https://docs.langchain.com/docs/
[Docker]: https://www.docker.com
[Node.js]: https://nodejs.org/