Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/nateraw/stable-diffusion-videos

Create 🔥 videos with Stable Diffusion by exploring the latent space and morphing between text prompts
https://github.com/nateraw/stable-diffusion-videos

ai-art huggingface huggingface-diffusers machine-learning stable-diffusion

Last synced: 5 days ago
JSON representation

Create 🔥 videos with Stable Diffusion by exploring the latent space and morphing between text prompts

Awesome Lists containing this project

README

        

# stable-diffusion-videos

Try it yourself in Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/nateraw/stable-diffusion-videos/blob/main/stable_diffusion_videos.ipynb)

**Example** - morphing between "blueberry spaghetti" and "strawberry spaghetti"

https://user-images.githubusercontent.com/32437151/188721341-6f28abf9-699b-46b0-a72e-fa2a624ba0bb.mp4

## Installation

```bash
pip install stable_diffusion_videos
```

## Usage

Check out the [examples](./examples) folder for example scripts 👀

### Making Videos

Note: For Apple M1 architecture, use ```torch.float32``` instead, as ```torch.float16``` is not available on MPS.

```python
from stable_diffusion_videos import StableDiffusionWalkPipeline
import torch

pipeline = StableDiffusionWalkPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float16,
).to("cuda")

video_path = pipeline.walk(
prompts=['a cat', 'a dog'],
seeds=[42, 1337],
num_interpolation_steps=3,
height=512, # use multiples of 64 if > 512. Multiples of 8 if < 512.
width=512, # use multiples of 64 if > 512. Multiples of 8 if < 512.
output_dir='dreams', # Where images/videos will be saved
name='animals_test', # Subdirectory of output_dir where images/videos will be saved
guidance_scale=8.5, # Higher adheres to prompt more, lower lets model take the wheel
num_inference_steps=50, # Number of diffusion steps per image generated. 50 is good default
)
```

### Making Music Videos

*New!* Music can be added to the video by providing a path to an audio file. The audio will inform the rate of interpolation so the videos move to the beat 🎶

```python
from stable_diffusion_videos import StableDiffusionWalkPipeline
import torch

pipeline = StableDiffusionWalkPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float16,
).to("cuda")

# Seconds in the song.
audio_offsets = [146, 148] # [Start, end]
fps = 30 # Use lower values for testing (5 or 10), higher values for better quality (30 or 60)

# Convert seconds to frames
num_interpolation_steps = [(b-a) * fps for a, b in zip(audio_offsets, audio_offsets[1:])]

video_path = pipeline.walk(
prompts=['a cat', 'a dog'],
seeds=[42, 1337],
num_interpolation_steps=num_interpolation_steps,
audio_filepath='audio.mp3',
audio_start_sec=audio_offsets[0],
fps=fps,
height=512, # use multiples of 64 if > 512. Multiples of 8 if < 512.
width=512, # use multiples of 64 if > 512. Multiples of 8 if < 512.
output_dir='dreams', # Where images/videos will be saved
guidance_scale=7.5, # Higher adheres to prompt more, lower lets model take the wheel
num_inference_steps=50, # Number of diffusion steps per image generated. 50 is good default
)
```

### Using the UI

```python
from stable_diffusion_videos import StableDiffusionWalkPipeline, Interface
import torch

pipeline = StableDiffusionWalkPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float16,
).to("cuda")

interface = Interface(pipeline)
interface.launch()
```

## Credits

This work built off of [a script](https://gist.github.com/karpathy/00103b0037c5aaea32fe1da1af553355
) shared by [@karpathy](https://github.com/karpathy). The script was modified to [this gist](https://gist.github.com/nateraw/c989468b74c616ebbc6474aa8cdd9e53), which was then updated/modified to this repo.

## Contributing

You can file any issues/feature requests [here](https://github.com/nateraw/stable-diffusion-videos/issues)

Enjoy 🤗