Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nazmul-karim170/UNICON
[CVPR'22] Official Implementation of the CVPR 2022 paper "UNICON: Combating Label Noise Through Uniform Selection and Contrastive Learning"
https://github.com/nazmul-karim170/UNICON
contrastive-learning deep-learning deep-neural-networks jensen-shannon-divergence label-noise-robustness machine-learning noisy-labels semi-supervised-learning
Last synced: about 19 hours ago
JSON representation
[CVPR'22] Official Implementation of the CVPR 2022 paper "UNICON: Combating Label Noise Through Uniform Selection and Contrastive Learning"
- Host: GitHub
- URL: https://github.com/nazmul-karim170/UNICON
- Owner: nazmul-karim170
- License: mit
- Created: 2022-03-26T00:29:13.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2023-12-31T01:26:28.000Z (10 months ago)
- Last Synced: 2024-07-22T05:20:55.826Z (4 months ago)
- Topics: contrastive-learning, deep-learning, deep-neural-networks, jensen-shannon-divergence, label-noise-robustness, machine-learning, noisy-labels, semi-supervised-learning
- Language: Python
- Homepage:
- Size: 877 KB
- Stars: 59
- Watchers: 2
- Forks: 14
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
UNICON: Combating Label Noise Through Uniform Selection and Contrastive
LearningIf you like our project, please give us a star ⭐ on GitHub for the latest update.
[![arXiv](https://img.shields.io/badge/Arxiv-2312.09313-b31b1b.svg?logo=arXiv)](https://arxiv.org/pdf/2203.14542.pdf)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/nazmul-karim170/UNICON-Noisy-Label/blob/main/LICENSE)## [Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Karim_UniCon_Combating_Label_Noise_Through_Uniform_Selection_and_Contrastive_Learning_CVPR_2022_paper.pdf)
## Training Pipeline
### UNICON Framework
![Framework](./Figure/Snip20220331_3.png)
### Installation Guide
1. Create a conda environment
```bash
conda create -n unicon
conda activate unicon
```2. After creating a virtual environment, install the required packages
```bash
pip install -r requirements.txt
```
### Download the Datasets* For adding Synthetic Noise, download these datasets
1. CIFAR10
2. CIFAR100
3. Tiny-ImageNet* For Datasets with Real-World Label Noise
1. Clothing1M (Please contact tong.xiao.work[at]gmail[dot]com to get the download link)
2. WebVision
### UNICON Training* Example run (CIFAR10 with 50% symmetric noise)
```bash
python Train_cifar.py --dataset cifar10 --num_class 10 --data_path ./data/cifar10 --noise_mode 'sym' --r 0.5
```
* Example run (CIFAR100 with 90% symmetric noise)```bash
python Train_cifar.py --dataset cifar100 --num_class 100 --data_path ./data/cifar100 --noise_mode 'sym' --r 0.9
```
This will throw an error as downloaded files will not be in the proper folder. That is why they must be manually moved to the "data_path".* Example Run (TinyImageNet with 50% symmetric noise)
```bash
python Train_TinyImageNet.py --ratio 0.5
```* Example run (Clothing1M)
```bash
python Train_clothing1M.py --batch_size 32 --num_epochs 200
```* Example run (Webvision)
```bash
python Train_webvision.py
```### Reference
If you have any questions, do not hesitate to contact [email protected]Also, if you find our work useful please consider citing our work:
@InProceedings{Karim_2022_CVPR,
author = {Karim, Nazmul and Rizve, Mamshad Nayeem and Rahnavard, Nazanin and Mian, Ajmal and Shah, Mubarak},
title = {UniCon: Combating Label Noise Through Uniform Selection and Contrastive Learning},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {9676-9686}
}