An open API service indexing awesome lists of open source software.

https://github.com/ndomah/portfolio-projects


https://github.com/ndomah/portfolio-projects

Last synced: 3 months ago
JSON representation

Awesome Lists containing this project

README

        

# Portfolio-Projects
This repository contains my Data Analytics and Data Science portfolio projects to showcase my skills.
## Data Analytics
- [Employee Incentives and Wellness Analysis & Dashboard](https://github.com/ndomah/Portfolio-Projects/tree/main/Data%20Analytics/Employee%20Incentives%20and%20Wellness%20Analysis%20%26%20Dashboard)
- Tools Used: SQL, Power BI
- [Employee Retention Churn Model & Development](https://github.com/ndomah/Portfolio-Projects/tree/main/Data%20Analytics/Employee%20Retention%20Churn%20Model%20%26%20Dashboard)
- Tools Used: Google Cloud Platform (GCP), BigQuery, Google Colab, Pycaret, Looker Studio
- [Shopping Customer Segmentation & Clustering](https://github.com/ndomah/Portfolio-Projects/tree/main/Data%20Analytics/Shopping%20Customer%20Segmentation%20%26%20Clustering)
- Tools Used: Jupyter Notebook, Python, Pandas, NumPy, Seaborn, Matplotlib, Scikit-learn
- [World Bank Analytics & Dashboard](https://github.com/ndomah/Portfolio-Projects/tree/main/Data%20Analytics/World%20Bank%20Analytics%20%26%20Dashboard)
- Tools Used: Jupyter Notebook, Python, APIs, Tableau
## Data Science
- [Disease Classifier](https://github.com/ndomah/Portfolio-Projects/tree/main/Data%20Science/Disease%20Classifier)
- Tools Used: Jupyter Notebook, Python, NumPy, Matplotlib, TensorFlow, Keras, FastAPI, Uvicorn, IO, Image, OS
- [IBM Capstone - Predicting SpaceX Falcon's First Stage Success](https://github.com/ndomah/Portfolio-Projects/tree/main/Data%20Science/Predicting%20SpaceX%20Falcon's%20First%20Stage%20Success%20(IBM%20Capstone))
- Tools Used: Jupyter Notebook, Python, Pandas, Matplotlib, Seaborn, Folium, Plotly Dash, BeautifulSoup, APIs, Machine Learning (Classification), SQL, Microsoft PowerPoint
- [SQL Code Generator Web App](https://github.com/ndomah/Portfolio-Projects/tree/main/Data%20Science/SQL%20Code%20Generator%20Web%20App)
- Tools Used: Python, Google Gemini LLM & API, Streamlit
- [Software Developer Salary Prediction](https://github.com/ndomah/Portfolio-Projects/tree/main/Data%20Science/Software%20Developer%20Salary%20Prediction)
- Tools Used: Jupyter Notebook, Python, NumPy, Pandas, Matplotlib, Seaborn, Scikit-learn, Machine Learning (Regression), Hyperparameter Tuning, Pickle, Streamlit
- [Taxi Time Series Analysis](https://github.com/ndomah/Portfolio-Projects/tree/main/Data%20Science/Taxi%20Time%20Series%20Analysis)
- **Tools Used**:
- Pandas for data manipulation and preprocessing.
- Matplotlib and Seaborn for data visualization.
- Statsmodels for statistical analysis and ARIMA modeling.
- Fbprophet (Prophet) for advanced time series forecasting.
- Scikit-learn for evaluation and performance metrics.
- **Jupyter Notebook**: For interactive analysis and visualization.
- **Data Source**: Public NYC taxi dataset.
- [Twitter Sentiment Analysis - Natural Language Processing](https://github.com/ndomah/Portfolio-Projects/tree/main/Data%20Science/Twitter%20Sentiment%20Analysis%20(Natural%20Language%20Processing))
- **Libraries**: Scikit-learn, LightGBM, XGBoost, NLTK, TextBlob, Pandas, NumPy, Matplotlib
- **Data Source**: Twitter Sentiment Analysis dataset from Kaggle
- **Text Preprocessing**: TF-IDF Vectorizer, Count Vectorizer, NLTK stopwords, word stemming via TextBlob
- **Machine Learning Models**: Logistic Regression, Gradient Boosting (LightGBM), XGBoost
- [Node Classification - Graph Neural Network](https://github.com/ndomah/Portfolio-Projects/tree/main/Data%20Science/Node%20Classification%20(Graph%20Neural%20Network))
- **Libraries**: PyTorch Geometric, Torch, Scikit-learn
- **Data Source**: Pubmed dataset from Planetoid
- **Machine Learning Techniques**: Graph Neural Networks (GNNs), GraphSAGE algorithm
- **Evaluation Metrics**: Accuracy, Cross-entropy loss
- [Image Classification - Computer Vision](https://github.com/ndomah/Portfolio-Projects/tree/main/Data%20Science/Image%20Classification%20(Computer%20Vision))
- **Framework**: PyTorch
- **Model**: ResNet-18 (pre-trained on ImageNet)
- **Libraries**: torchvision, cv2, matplotlib, PIL
- **Optimization**: Adam optimizer, Binary Cross-Entropy Loss
- **Data Processing**: Custom Dataset class, DataLoader
- **Deployment**: Google Colab for training