Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ndrplz/machine_learning_lectures

Collection of lectures and lab lectures on machine learning and deep learning. Lab practices in Python and TensorFlow.
https://github.com/ndrplz/machine_learning_lectures

deep-learning deep-learning-tutorial deep-neural-networks lecture-material lecture-notes machine-learning machine-learning-algorithms machine-learning-tutorials reinforcement-learning tensorflow tensorflow-tutorials tutorial-exercises tutorials

Last synced: 3 months ago
JSON representation

Collection of lectures and lab lectures on machine learning and deep learning. Lab practices in Python and TensorFlow.

Awesome Lists containing this project

README

        

# machine_learning_lectures

**Collection of lectures and lab lectures on machine learning and deep learning.**

---

## Deep Learning

### Gradient Descent
thumb_gradient_descent


LaTeX source: [here](https://github.com/ndrplz/machine_learning_lectures/tree/master/slides/deep_learning/gradient_descent).


Practice (1) [slides](https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/tensorflow_introduction/tex/tensorflow_intro.pdf).


Practice (2) [slides](https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/tensorflow_linear_regression/tex/tensorflow_regression.pdf) and [code](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/tensorflow_linear_regression/code) (TensorFlow).

### Neural Networks and Deep Neural Networks
thumb_neural_networks


LaTeX source: [here](https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/deep_learning/deep_neural_networks/).


Practice [slides](https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/tensorflow_neural_network/tex/tensorflow_neural_nets.pdf) and [code](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/tensorflow_neural_network/code) (TensorFlow).

### Convolutional Neural Networks
thumb_convnets


LaTeX source: [here](https://github.com/ndrplz/machine_learning_lectures/tree/master/slides/deep_learning/convolutional_neural_networks).


Practice [slides](https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/tensorflow_convolutional_nets/tex/tensorflow_convnets.pdf) and [code](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/tensorflow_convolutional_nets/code) (TensorFlow).

### Recurrent Neural Networks
thumb_recurrent


LaTeX source: [here](https://github.com/ndrplz/machine_learning_lectures/tree/master/slides/deep_learning/recurrent_neural_networks).


Practice [slides](https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/tensorflow_recurrent_nets/tex/tensorflow_lstm.pdf) and [code](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/tensorflow_recurrent_nets/code) (TensorFlow).

---

## Reinforcement Learning

### Introduction and Model Free Learning
thumb_model_free


LaTeX source: [here](https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/reinforcement_learning/01_introduction_and_model_free_learning/).


Practice [slides](https://github.com/ndrplz/machine_learning_lectures/blob/master/lab/q_learning/tex/q_learning.pdf) and [code](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/q_learning/code) (TensorFlow).

### Function Approximation
thumb_fun_approx


LaTeX source: [here](https://github.com/ndrplz/machine_learning_lectures/blob/master/slides/reinforcement_learning/02_function_approximation/).

---

## Machine Learning

### Boosting
thumb_boosting


LaTeX source: [here](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/boosting/tex).


Practice code: [here](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/boosting/code).

### Clustering

thumb_clustering


LaTeX source: [here](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/clustering/tex).


Practice code: [here](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/clustering/code).

### Dimensionality Reduction

thumb_dim_reduction


LaTeX source: [here](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/dimensionality_reduction/tex).


Practice code: [here](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/dimensionality_reduction/code).

### Logistic Regression

thumb_logistic_regression


LaTeX source: [here](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/logistic_regression/tex).


Practice code: [here](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/logistic_regression/code).

### Naive Bayes

thumb_bayes


LaTeX source: [here](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/naive_bayes/tex).


Practice code: [here](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/naive_bayes/code).

### Support Vector Machine (SVM)

thumb_svm


LaTeX source: [here](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/support_vector_machines/tex).


Practice code: [here](https://github.com/ndrplz/machine_learning_lectures/tree/master/lab/support_vector_machines/code).

## F.A.Q.

* **How did you make the thumbnails?**

Please see [`make_thumbs.py`](./make_thumbs.py). The script assumes that [ImageMagick](https://imagemagick.org/index.php) library is already installed in your system.