Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/nearai/torchfold

Tools for PyTorch
https://github.com/nearai/torchfold

deep-learning deep-neural-networks machine-learning pytorch

Last synced: 5 days ago
JSON representation

Tools for PyTorch

Awesome Lists containing this project

README

        

[![PyPi version](https://pypip.in/v/torchfold/badge.png)](https://pypi.org/project/torchfold/) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1299387.svg)](https://doi.org/10.5281/zenodo.1299387)
# TorchFold

Blog post: http://near.ai/articles/2017-09-06-PyTorch-Dynamic-Batching/

Analogous to [TensorFlow Fold](https://github.com/tensorflow/fold), implements dynamic batching with super simple interface.
Replace every direct call in your computation to nn module with `f.add('function name', arguments)`.
It will construct an optimized version of computation and on `f.apply` will dynamically batch and execute the computation on given nn module.

## Installation
We recommend using pip package manager:
```
pip install torchfold
```

## Example

```
f = torchfold.Fold()

def dfs(node):
if is_leaf(node):
return f.add('leaf', node)
else:
prev = f.add('init')
for child in children(node):
prev = f.add('child', prev, child)
return prev

class Model(nn.Module):
def __init__(self, ...):
...

def leaf(self, leaf):
...

def child(self, prev, child):
...

res = dfs(my_tree)
model = Model(...)
f.apply(model, [[res]])
```

To cite this repository in publications:

@misc{illia_polosukhin_2018_1299387,
author = {Illia Polosukhin and
Maksym Zavershynskyi},
title = {nearai/torchfold: v0.1.0},
month = jun,
year = 2018,
doi = {10.5281/zenodo.1299387},
url = {https://doi.org/10.5281/zenodo.1299387}
}