Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/neelsoumya/dssurvivalbookdown
A bookdown demonstrating how to build survival models using the dsSurvival package in DataSHIELD
https://github.com/neelsoumya/dssurvivalbookdown
cox-regression datashield dssurvival dssurvivalclient privacy-protection r survival-models
Last synced: about 2 months ago
JSON representation
A bookdown demonstrating how to build survival models using the dsSurvival package in DataSHIELD
- Host: GitHub
- URL: https://github.com/neelsoumya/dssurvivalbookdown
- Owner: neelsoumya
- License: gpl-3.0
- Created: 2021-11-29T20:49:29.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2022-06-27T05:39:30.000Z (over 2 years ago)
- Last Synced: 2023-03-06T18:17:49.780Z (almost 2 years ago)
- Topics: cox-regression, datashield, dssurvival, dssurvivalclient, privacy-protection, r, survival-models
- Language: TeX
- Homepage: https://neelsoumya.github.io/dsSurvivalbookdown/
- Size: 829 KB
- Stars: 3
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- Funding: .github/FUNDING.yml
- License: LICENSE.md
- Citation: CITATION.cff
Awesome Lists containing this project
README
## Introduction
[![License](https://img.shields.io/badge/license-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0.html)
This is a bookdown with executable code demonstrating how to use the dsSurvival package to create privacy preserving survival models in DataSHIELD. dsSurvival builds privacy preserving survival models.
DataSHIELD is a platform for federated analysis of private data. This package can be used to build survival models, Cox proportional hazards models or Cox regression models.
The complete bookdown is available here:
https://neelsoumya.github.io/dsSurvivalbookdown
DataSHIELD has a client-server architecture and this package has a client side and server side component.
* The server side package is called dsSurvival:
https://github.com/neelsoumya/dsSurvival* The client side package is called dsSurvivalClient:
https://github.com/neelsoumya/dsSurvivalClientIf you use the code, please cite the following manuscript:
Banerjee S, Sofack G, Papakonstantinou T, Avraam D, Burton P, et al. (2022), dsSurvival: Privacy preserving survival models for federated individual patient meta-analysis in DataSHIELD, bioRxiv: 2022.01.04.471418.
https://www.biorxiv.org/content/10.1101/2022.01.04.471418v2
https://doi.org/10.1101/2022.01.04.471418
https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-022-06085-1
A bib file is available here:
https://github.com/neelsoumya/dsSurvival/blob/main/CITATION.bib
```bibtex
@article{Banerjee2022,
author = {Banerjee, Soumya and Sofack, Ghislain and Papakonstantinou, Thodoris and Avraam, Demetris and Burton, Paul and Z{\"{o}}ller, Daniela and Bishop, Tom RP},
doi = {10.1101/2022.01.04.471418},
journal = {bioRxiv},
month = {jan},
pages = {2022.01.04.471418},
publisher = {Cold Spring Harbor Laboratory},
title = {{dsSurvival: Privacy preserving survival models for federated individual patient meta-analysis in DataSHIELD}},
year = {2022}
}
```## Bookdown
The complete bookdown, tutorial, vignette with executable code and synthetic data is available here:
https://neelsoumya.github.io/dsSurvivalbookdown
## Quick start
Please install R and R Studio
https://www.rstudio.com/products/rstudio/download/preview/
Install the following packages:
```r
install.packages('devtools')
library(devtools)
devtools::install_github('neelsoumya/dsSurvivalClient')
devtools::install_github('datashield/[email protected]')
install.packages('rmarkdown')
install.packages('knitr')
install.packages('tinytex')
install.packages('metafor')
install.packages('DSOpal')
install.packages('DSI')
install.packages('opalr')```
Follow the tutorial in bookdown format with executable code:
https://neelsoumya.github.io/dsSurvivalbookdown/
## Full Installation
* Install R and R Studio
* In R, install the following packages
```r
install.packages('devtools')
library(devtools)
devtools::install_github('neelsoumya/dsSurvivalClient')
install.packages('bookdown')
devtools::install_github('datashield/[email protected]')
install.packages('rmarkdown')
install.packages('knitr')
install.packages('tinytex')
install.packages('metafor')
install.packages('DSOpal')
install.packages('DSI')
install.packages('opalr')
```or
```r
R --no-save < installer_R.R
```
or
run the following script in R `installer_R.R`
Install R Studio and the development environment as described below:https://data2knowledge.atlassian.net/wiki/spaces/DSDEV/pages/12943461/Getting+started
Install the virtual machines as described below:
https://data2knowledge.atlassian.net/wiki/spaces/DSDEV/pages/931069953/Installation+Training+Hub-+DataSHIELD+v6
https://data2knowledge.atlassian.net/wiki/spaces/DSDEV/pages/1657634881/Testing+100+VM
https://data2knowledge.atlassian.net/wiki/spaces/DSDEV/pages/1657634898/Tutorial+6.1.0+100+VM
Install dsBase and dsSurvival on Opal server in the Virtual Machine (type neelsoumya/dsSurvival and main in the textboxes)
## UsageSee the bookdown below for a complete tutorial:
https://neelsoumya.github.io/dsSurvivalbookdown
A minimal example of a book based on R Markdown and **bookdown** (https://github.com/rstudio/bookdown).
The bookdown can be compiled by typing the following commands:
```r
library(bookdown)bookdown::serve_book()
```## Contact
Soumya Banerjee and Tom R.P. Bishop
## Citation
If you use the code, please cite the following manuscript:
Banerjee S, Sofack G, Papakonstantinou T, Avraam D, Burton P, et al. (2022), dsSurvival: Privacy preserving survival models for federated individual patient meta-analysis in DataSHIELD, bioRxiv: 2022.01.04.471418.
https://www.biorxiv.org/content/10.1101/2022.01.04.471418v2
https://doi.org/10.1101/2022.01.04.471418
https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-022-06085-1
A bib file is available here:
https://github.com/neelsoumya/dsSurvival/blob/main/CITATION.bib
```bibtex
@article{Banerjee2022,
author = {Banerjee, Soumya and Sofack, Ghislain and Papakonstantinou, Thodoris and Avraam, Demetris and Burton, Paul and Z{\"{o}}ller, Daniela and Bishop, Tom RP},
doi = {10.1101/2022.01.04.471418},
journal = {bioRxiv},
month = {jan},
pages = {2022.01.04.471418},
publisher = {Cold Spring Harbor Laboratory},
title = {{dsSurvival: Privacy preserving survival models for federated individual patient meta-analysis in DataSHIELD}},
year = {2022}
}
```