Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/neelsoumya/ramanujan_number_generator
Generating Ramanujan cab numbers
https://github.com/neelsoumya/ramanujan_number_generator
ramanujan ramanujan-cab-numbers ramanujan-numbers recreational-mathematics
Last synced: 4 days ago
JSON representation
Generating Ramanujan cab numbers
- Host: GitHub
- URL: https://github.com/neelsoumya/ramanujan_number_generator
- Owner: neelsoumya
- Created: 2020-11-29T19:10:04.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2022-09-22T13:50:03.000Z (about 2 years ago)
- Last Synced: 2023-03-06T18:18:06.854Z (over 1 year ago)
- Topics: ramanujan, ramanujan-cab-numbers, ramanujan-numbers, recreational-mathematics
- Language: PostScript
- Homepage:
- Size: 800 KB
- Stars: 2
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.MD
- Citation: CITATION.cff
Awesome Lists containing this project
README
## Introduction
Python script to generate Ramanujan numbers (numbers that can be expressed as the sum
of two different cubes in two different ways)For example, 1729 = 10^3 + 9^3 = 12^3 + 1^3
where ^ denotes exponentiation.
## Installation
Install R
https://www.r-project.org/
R Studio
https://www.rstudio.com/products/rstudio/download/preview/
and Python
https://www.python.org/downloads/
In R run the following commands
```r
install.packages('sqldf')
install.packages('ggplot2')
```or
```r
install.packages('devtools')
library(devtools)
devtools::install_github('neelsoumya/ramanujan_number_generator')
```Clone or download the repository
```r
git clone https://github.com/neelsoumya/ramanujan_number_generator
```## Usage
```python
python ramanujan_test_v1.py
``````r
R --no-save < analysis.R
```
## Files
* `ramanujan_test_v1.py`
* Usage
nohup python3 ramanujan_test_v1.py
* `ramanujan_numbers_list.txt`
* a list of some Ramanujan numbers in the format (2, 16, 9, 15, 4104)
where 2^3 + 16^3 = 9^3 + 15^3 = 4104* `ramanujan_numbers_list2000.txt`
* a list of Ramanujan numbers upto a,b,c,d <= 2000
where a^2 + b^2 = c^2 + d^2* `ramanujan_numbers_list2001to4000.txt`
* a list of Ramanujan numbers from a,b,c,d > 2000 upto a,b,c,d <= 4000
where a^2 + b^2 = c^2 + d^2* `combined_numbers.txt`
* combined list of numbers
cat ramanujan*.txt > combined_numbers.txt
(, ), and done removed* `hist_ramanujan_numbers.jpg`
* histogram of Ramanujan numbers
* `hist_ramanujan_numbers_log10.eps`
* histogram of Ramanujan numbers
* generated using analysis.R* `hist_ramanujan_numbers.eps`
* histogram of Ramanujan numbers
* `ALL.txt`
* All Ramanujan numbers
## Contact
Soumya Banerjee
https://sites.google.com/site/neelsoumya
## Other ideas and resources
https://stackoverflow.com/questions/69669784/ramanujans-number-in-c#
https://stackoverflow.com/questions/32876131/making-hardy-ramanujan-nth-number-finder-more-efficient
http://recmath.org/Magic%20Squares/narciss.htm
https://ia801004.us.archive.org/17/items/martingardnerthecolossalbookofmathematics/Martin%20Gardner%20-%20The%20Colossal%20Book%20Of%20Mathematics.pdf
http://jnsilva.ludicum.org/HMR13_14/536.pdf
https://mathoverflow.net/questions/152580/recreational-mathematics-where-to-search
http://www.science.smith.edu/~jhenle/pleasingmath/
## Manuscript and citation
Soumya Banerjee, "Ramanujan Cab Numbers: A Recreational Mathematics Activity," Journal of Humanistic Mathematics, Volume 12 Issue 2 (July 2022), pages 503-517.
Available at:
https://scholarship.claremont.edu/jhm/vol12/iss2/29
Preprint
https://osf.io/a2jc9/
banerjee, soumya. 2022. “Ramanujan Cab Numbers: A Recreational Mathematics Activity.” OSF Preprints. May 10. doi:10.31219/osf.io/a2jc9