Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/neemiasbsilva/datascience-portfolio
Hello guys, welcome to my Data Science Portfolio. I include some knowledges I earn in my journey. I included some case study, papers, and code. Please check the readme.
https://github.com/neemiasbsilva/datascience-portfolio
case-study churn-prediction code-challenges data-analysis data-science deep-learning forecasting fundamental-of-statistics health-care image-recognition machine-learnin machine-learning math mathematics pattern-recognition portfolio programming-skills speech-emotion-detection statistics voice-activity-detection
Last synced: 2 days ago
JSON representation
Hello guys, welcome to my Data Science Portfolio. I include some knowledges I earn in my journey. I included some case study, papers, and code. Please check the readme.
- Host: GitHub
- URL: https://github.com/neemiasbsilva/datascience-portfolio
- Owner: neemiasbsilva
- License: mit
- Created: 2022-08-06T15:36:45.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2024-06-19T02:19:11.000Z (7 months ago)
- Last Synced: 2024-06-20T00:19:30.727Z (7 months ago)
- Topics: case-study, churn-prediction, code-challenges, data-analysis, data-science, deep-learning, forecasting, fundamental-of-statistics, health-care, image-recognition, machine-learnin, machine-learning, math, mathematics, pattern-recognition, portfolio, programming-skills, speech-emotion-detection, statistics, voice-activity-detection
- Language: Jupyter Notebook
- Homepage:
- Size: 53.4 MB
- Stars: 1
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Neemias Buceli Data Science Portfolio
![NumPy](https://img.shields.io/badge/numpy-%23013243.svg?style=for-the-badge&logo=numpy&logoColor=white)
![Pandas](https://img.shields.io/badge/pandas-%23150458.svg?style=for-the-badge&logo=pandas&logoColor=white)
![Plotly](https://img.shields.io/badge/Plotly-%233F4F75.svg?style=for-the-badge&logo=plotly&logoColor=white)
![scikit-learn](https://img.shields.io/badge/scikit--learn-%23F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=white)
![SciPy](https://img.shields.io/badge/SciPy-%230C55A5.svg?style=for-the-badge&logo=scipy&logoColor=%white)
![Keras](https://img.shields.io/badge/Keras-%23D00000.svg?style=for-the-badge&logo=Keras&logoColor=white)
![TensorFlow](https://img.shields.io/badge/TensorFlow-%23FF6F00.svg?style=for-the-badge&logo=TensorFlow&logoColor=white)
![PyTorch](https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white)## Context
Welcome to my Data Science Portfolio. Here, I showcase the insights and skills I have acquired throughout my journey in the field. You’ll find a collection of case studies, research papers, and code that illustrate my work and expertise.
Note: I regularly update this repository with new projects and links to additional repositories for more complex projects that exceed the scope of this one. Stay tuned for more exciting updates!
## Table of Contents
- [Math & Stat](#math--stat);
- [Pogramming Skills](#programming-skills);
- [Machine Learning](#machine-leaning);
- [Deep Learning](#deep-learning).## Math & Stat
- [Fundamental of Statistic](https://github.com/neemiasbsilva/NeemiasBuceli-ds-portfolio/tree/main/mathematic-and-statistics/fundamental-of-statistics);
- Population vs Sample;
- Mean;
- Variance;
- Standard Deviation (STD);
- Correlation;
- Covariance;
- Probability Distribution Functions;
- Bayes Theorem.
- [Bootstraping](mathematic-and-statistics/bootstrapping);
- [Expectation Algorithm](mathematic-and-statistics/expectation_algorithm);## Programming Skills
- [Code Challenge](https://github.com/neemiasbsilva/programming-skills);
- [knapsack-problem-using-dp-grasp-tabu](https://github.com/neemiasbsilva/knapsack-problem-using-dp-grasp-tabu);
- Dynamic programming;
- Grasp Heuristic;
- TABU Search.## Machine Leaning
- [Machine Leaning Algorithms - Tutorial](https://github.com/neemiasbsilva/machine-learning-algorithm);
- [Case Studies: Data Science Projects](https://github.com/neemiasbsilva/case-study-data-science);
- [Forecasting Data Analysis](forecasting/);
- [Pattern Recognition](pattern-recognition/):
- Linear Algebra - Singular Value Decomposition;
- Vector Calculus;
- Probability and Distribution;
- Optimization and Convex Optimization.
- Machine Learning Algorithm:
- Linear:
- Perceptron;
- Adaline;
- Logistic Regression.
- Non Linear:
- SVM;
- Decision Tree;
- Random Forest;
- Adaboost;
- Gradient Boosting;
- XGBoost.
- [Predict wich new visitors will come back and purchase using the Google Merchandise Store dataset](ecommerce-using-bigquery-ML).## Deep Learning
- [Regression in Convolutional Neural Network for Applied to Plant Leaf Count](https://github.com/neemiasbsilva/regression-in-CNNs-applied-to-plant-leaf-count);
- [Music Gener classification using MLFlow for tracking metrics in azure cloud](https://github.com/neemiasbsilva/music-genre-classification-mlflow-azure)
- [MiniGPT4 for image caption generation](https://github.com/neemiasbsilva/MiniGPT4-image-caption-generation);
- [Developing a nano GPT-2 from scratch using PyTorch and training using the Fineweb datase](https://github.com/neemiasbsilva/developing-nanoGPT2-fineweb).