https://github.com/neka-nat/pytorch-hdml
Hardness-Aware Deep Metric Learning (CVPR2019) in pytorch
https://github.com/neka-nat/pytorch-hdml
cars196 cub200 cvpr2019 deep-learning deep-metric-learning pytorch triplet-loss
Last synced: 7 months ago
JSON representation
Hardness-Aware Deep Metric Learning (CVPR2019) in pytorch
- Host: GitHub
- URL: https://github.com/neka-nat/pytorch-hdml
- Owner: neka-nat
- License: mit
- Created: 2019-08-20T13:13:48.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2021-05-02T14:06:10.000Z (over 4 years ago)
- Last Synced: 2025-03-18T22:35:51.620Z (7 months ago)
- Topics: cars196, cub200, cvpr2019, deep-learning, deep-metric-learning, pytorch, triplet-loss
- Language: Python
- Homepage:
- Size: 20.6 MB
- Stars: 28
- Watchers: 2
- Forks: 7
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Hardness-Aware Deep Metric Learning
This is an unofficial implementation of ["Hardness-Aware Deep Metric Learning" (CVPR 2019 Oral)](https://arxiv.org/abs/1903.05503) in Pytorch.
## Installation
```
cd pytorch-hdml
pip install pipenv
pipenv install
```## Download dataset
```
cd data
python cars196_downloader.py
python cars196_converter.py
```## Train CARS196 dataset
Execute a training script.
When executed, the tensorboard log is saved.```
pipenv shell
python train_triplet.py
```## Result triplet HDML
### CARS196 result on training(99 classes, 30000 iterations)
#### Loss
#### t-SNE
### CARS196 result on testing(97 classes)
#### t-SNE
## Todo
- [ ] Implementation of Npair loss HDML
## Reference
Official tensorflow implementation https://github.com/wzzheng/HDML