https://github.com/neka-nat/pytorch-softtriple
SoftTriple (ICCV2019) in pytorch
https://github.com/neka-nat/pytorch-softtriple
deep-learning deep-metric-learning iccv2019 pytorch
Last synced: 6 months ago
JSON representation
SoftTriple (ICCV2019) in pytorch
- Host: GitHub
- URL: https://github.com/neka-nat/pytorch-softtriple
- Owner: neka-nat
- License: mit
- Created: 2019-10-08T12:26:55.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2019-10-11T00:01:25.000Z (almost 6 years ago)
- Last Synced: 2025-04-13T08:12:08.381Z (6 months ago)
- Topics: deep-learning, deep-metric-learning, iccv2019, pytorch
- Language: Python
- Homepage:
- Size: 11.1 MB
- Stars: 8
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# SoftTriple
This is an unofficial implementation of ["SoftTriple Loss: Deep Metric Learning Without Triplet Sampling" (ICCV 2019)](https://arxiv.org/abs/1909.05235) in Pytorch.
## Installation
```
cd pytorch-hdml
pip install pipenv
pipenv install
```## Download dataset
```
cd data
python cars196_downloader.py
python cars196_converter.py
```## Train CARS196 dataset
Execute a training script.
When executed, the tensorboard log is saved.```
pipenv shell
python train_softtriple.py
```## Result
### CARS196 result on training(99 classes, 30000 iterations)
#### Loss

#### t-SNE
