Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nelson-gon/cellseg
cellseg: Multiclass Cell Segmentation
https://github.com/nelson-gon/cellseg
biology deep-learning image-classification image-processing image-segmentation multiclass-classification neural-networks torch
Last synced: 6 days ago
JSON representation
cellseg: Multiclass Cell Segmentation
- Host: GitHub
- URL: https://github.com/nelson-gon/cellseg
- Owner: Nelson-Gon
- License: mit
- Created: 2021-02-04T12:33:11.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2021-09-23T09:38:36.000Z (about 3 years ago)
- Last Synced: 2024-10-29T13:59:58.584Z (about 2 months ago)
- Topics: biology, deep-learning, image-classification, image-processing, image-segmentation, multiclass-classification, neural-networks, torch
- Language: Python
- Homepage: https://cellseg.readthedocs.io/en/latest/
- Size: 42.4 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- Changelog: changelog.md
- Contributing: .github/CONTRIBUTING.md
- License: LICENSE
- Code of conduct: .github/CODE_OF_CONDUCT.md
Awesome Lists containing this project
README
# cellseg: Multiclass Cell Segmentation
[![PyPI version](https://badge.fury.io/py/cellseg.svg)](https://badge.fury.io/py/cellseg)
![Stage](https://www.repostatus.org/badges/latest/wip.svg)
[![Codecov](https://codecov.io/gh/Nelson-Gon/cellseg/branch/main/graph/badge.svg)](https://codecov.io/gh/Nelson-Gon/cellseg?branch=main)
[![Test Install](https://github.com/Nelson-Gon/cellseg/actions/workflows/build-package.yaml/badge.svg)](https://github.com/Nelson-Gon/cellseg/actions/workflows/build-package.yaml)
[![PyPI license](https://img.shields.io/pypi/l/cellseg.svg)](https://pypi.python.org/pypi/cellseg/)
[![Documentation Status](https://readthedocs.org/projects/cellseg/badge/?version=latest)](https://cellseg.readthedocs.io/en/latest/?badge=latest)
[![Total Downloads](https://pepy.tech/badge/cellseg)](https://pepy.tech/project/cellseg)
[![Monthly Downloads](https://pepy.tech/badge/cellseg/month)](https://pepy.tech/project/cellseg)
[![Weekly Downloads](https://pepy.tech/badge/cellseg/week)](https://pepy.tech/project/cellseg)
[![Maintenance](https://img.shields.io/badge/Maintained%3F-yes-green.svg)](https://GitHub.com/Nelson-Gon/cellseg/graphs/commit-activity)
[![GitHub last commit](https://img.shields.io/github/last-commit/Nelson-Gon/cellseg.svg)](https://github.com/Nelson-Gon/cellseg/commits/main)
[![GitHub issues](https://img.shields.io/github/issues/Nelson-Gon/cellseg.svg)](https://GitHub.com/Nelson-Gon/cellseg/issues/)
[![GitHub issues-closed](https://img.shields.io/github/issues-closed/Nelson-Gon/cellseg.svg)](https://GitHub.com/Nelson-Gon/cellseg/issues?q=is%3Aissue+is%3Aclosed)# Development stage
- [x] Read Tiff Images
- [x] Read Non Tiff Images
- [x] Write Data Transformers and Loaders
- [ ] Write functional model plus scripts
- [ ] Modify model weights/layers
- [ ] Read stacked tiff images/videos
# Introduction
`cellseg` is a PyTorch (`torch`) based deep learning package aimed at multiclass cell segmentation.
# Installation
```shell
pip install cellseg
```
Or if you want to build from source```shell
git clone [email protected]:Nelson-Gon/cellseg.git
cd cellseg
python setup.py install```
# Usage
## Script mode
**View images**
```shell
python -m cellseg -d data/train -t "image" -n 4 -s 512
```To get help
```shell
python -m cellseg --help
#usage: __main__.py [-h] -d IMAGE_DIRECTORY -s IMAGE_SIZE -t TARGET -n NUMBER
#
#optional arguments:
# -h, --help show this help message and exit
# -d IMAGE_DIRECTORY, --image-directory IMAGE_DIRECTORY
# Path to image directory containing images and
# masks/labels
# -s IMAGE_SIZE, --image-size IMAGE_SIZE
# Size of images
# -t TARGET, --target TARGET
# Target images to show
# -n NUMBER, --number NUMBER
# Number of images to show
```## Programming mode
**Importing relevant modules**
```shell
from cellseg.data import DataProcessor
from cellseg.model import CellNet
from cellseg.utils import DataProcessor, show_images
```**Creating a a model object**
```shell
my_model = CellNet()
```**Load training data**
```shell
train_data = DataProcessor(image_dir="data/train/images", label_dir="data/train/images", image_suffix="tif")
```**View loaded images or masks**
```shell
show_images(train_data, number = 8, target="image")
```**Training**