Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/neptune-ai/neptune-sklearn
Experiment tracking for scikit-learn. 🧩 Log, organize, visualize and compare model metrics, parameters, dataset versions, and more.
https://github.com/neptune-ai/neptune-sklearn
dashboard logger management metadata mlops optimization organize scikit-learn sklearn store tracker training versioning
Last synced: 3 months ago
JSON representation
Experiment tracking for scikit-learn. 🧩 Log, organize, visualize and compare model metrics, parameters, dataset versions, and more.
- Host: GitHub
- URL: https://github.com/neptune-ai/neptune-sklearn
- Owner: neptune-ai
- License: apache-2.0
- Created: 2021-04-29T07:36:36.000Z (over 3 years ago)
- Default Branch: master
- Last Pushed: 2024-07-05T13:47:15.000Z (6 months ago)
- Last Synced: 2024-09-28T13:23:11.067Z (3 months ago)
- Topics: dashboard, logger, management, metadata, mlops, optimization, organize, scikit-learn, sklearn, store, tracker, training, versioning
- Language: Python
- Homepage: https://docs.neptune.ai/integrations/sklearn/
- Size: 114 KB
- Stars: 6
- Watchers: 8
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
README
# Neptune + scikit-learn integration
Experiment tracking for scikit-learn–trained models.
## What will you get with this integration?
* Log, organize, visualize, and compare ML experiments in a single place
* Monitor model training live
* Version and query production-ready models and associated metadata (e.g., datasets)
* Collaborate with the team and across the organization## What will be logged to Neptune?
* classifier and regressor parameters,
* pickled model,
* test predictions,
* test predictions probabilities,
* test scores,
* classifier and regressor visualizations, like confusion matrix, precision-recall chart, and feature importance chart,
* KMeans cluster labels and clustering visualizations,
* metadata including git summary info,
* [other metadata](https://docs.neptune.ai/logging/what_you_can_log)![image](https://docs.neptune.ai/img/app/integrations/scikit-learn.png)
## Resources
* [Documentation](https://docs.neptune.ai/integrations/sklearn)
* [Code example on GitHub](https://github.com/neptune-ai/examples/blob/main/integrations-and-supported-tools/sklearn/scripts/Neptune_Scikit_learn_classification.py)
* [Runs logged in the Neptune app](https://app.neptune.ai/o/common/org/sklearn-integration/e/SKLEAR-95/all)
* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/master/integrations-and-supported-tools/sklearn/notebooks/Neptune_Scikit_learn.ipynb)## Example
```
# On the command line:
pip install neptune-sklearn
``````python
# In Python, prepare a fitted estimator
parameters = {
"n_estimators": 70, "max_depth": 7, "min_samples_split": 3
}estimator = ...
estimator.fit(X_train, y_train)# Import Neptune and start a run
import neptunerun = neptune.init_run(
project="common/sklearn-integration",
api_token=neptune.ANONYMOUS_API_TOKEN,
)# Log parameters and scores
run["parameters"] = parametersy_pred = estimator.predict(X_test)
run["scores/max_error"] = max_error(y_test, y_pred)
run["scores/mean_absolute_error"] = mean_absolute_error(y_test, y_pred)
run["scores/r2_score"] = r2_score(y_test, y_pred)# Stop the run
run.stop()
```## Support
If you got stuck or simply want to talk to us, here are your options:
* Check our [FAQ page](https://docs.neptune.ai/getting_help)
* You can submit bug reports, feature requests, or contributions directly to the repository.
* Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),
* You can just shoot us an email at [email protected]