Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/neso613/ASR_TFLite
Collection of ASR models for English TFLite models for faster inference.
https://github.com/neso613/ASR_TFLite
Last synced: about 2 months ago
JSON representation
Collection of ASR models for English TFLite models for faster inference.
- Host: GitHub
- URL: https://github.com/neso613/ASR_TFLite
- Owner: neso613
- License: apache-2.0
- Created: 2021-06-01T09:54:44.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2022-02-21T16:27:27.000Z (almost 3 years ago)
- Last Synced: 2024-08-04T01:07:11.174Z (5 months ago)
- Language: Jupyter Notebook
- Homepage:
- Size: 27.6 MB
- Stars: 10
- Watchers: 1
- Forks: 4
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-tensorflow-lite - Inference - asr) | Community | (Models with samples / Speech)
README
# ASR_TFLite
This repository provides an Automatic Speech Recognition (ASR) models in TensorFlow Lite (TFLite) for TensorFlow 2.x. These models primarily come from two repositories - [asr](https://www.huylenguyen.com/asr) and [TensorFlowASR](https://github.com/TensorSpeech/TensorFlowASR). We provide end-to-end Jupyter Notebooks that show the inference process using TFLite. \
[English-ASR pip wheel](https://pypi.org/project/english-asr/1.2/)\
[TF Hub](https://tfhub.dev/neso613/lite-model/ASR_TFLite/pre_trained_models/English/1)## Installation
- tensorflow
- numpy
- librosa## Models
- [Conformer Transducer](https://arxiv.org/abs/2005.08100) using [LibriSpeech](http://www.openslr.org/12) dataset.## References
- [Android demo app using the converted model](https://github.com/windmaple/tflite-asr)
- [TensorFlow Lite Conversion](https://www.tensorflow.org/lite/convert)
- [Float16 quantization in TensorFlow Lite](https://www.tensorflow.org/lite/performance/post_training_float16_quant)
- [Dynamic-range quantization in TensorFlow Lite](https://www.tensorflow.org/lite/performance/post_training_quant)