Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/neu-vi/ezflow
A modular PyTorch library for optical flow estimation using neural networks
https://github.com/neu-vi/ezflow
modular optical-flow pytorch
Last synced: 3 months ago
JSON representation
A modular PyTorch library for optical flow estimation using neural networks
- Host: GitHub
- URL: https://github.com/neu-vi/ezflow
- Owner: neu-vi
- License: mit
- Created: 2021-07-07T13:58:07.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-04-08T15:55:00.000Z (9 months ago)
- Last Synced: 2024-05-21T09:14:20.400Z (8 months ago)
- Topics: modular, optical-flow, pytorch
- Language: Python
- Homepage: https://ezflow.readthedocs.io/
- Size: 595 KB
- Stars: 129
- Watchers: 6
- Forks: 8
- Open Issues: 25
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.rst
- License: LICENSE
- Citation: CITATION.cff
- Authors: AUTHORS.rst
Awesome Lists containing this project
README
EzFlow
A modular PyTorch library for optical flow estimation using neural networks
[![Tests](https://github.com/neu-vig/ezflow/actions/workflows/package-test.yml/badge.svg)](https://github.com/neu-vig/ezflow/actions/workflows/package-test.yml)
[![Docs](https://readthedocs.org/projects/ezflow/badge/?version=latest)](https://ezflow.readthedocs.io/en/latest/?badge=latest)
[![Downloads](https://static.pepy.tech/badge/ezflow)](https://pepy.tech/project/ezflow)**[Documentation](https://ezflow.readthedocs.io/en/latest/)** | **[Tutorials](https://ezflow.readthedocs.io/en/latest/tutorials/index.html)**
## Installation
### From source (recommended)
```shell
git clone https://github.com/neu-vig/ezflow
cd ezflow/
python setup.py install```
### From PyPI
```shell
pip install ezflow
```
___### Models supported
- [x] [DICL](https://arxiv.org/abs/2010.14851)
- [x] [DCVNet](https://jianghz.me/files/DCVNet_camera_ready_wacv2023.pdf) ([1 checkpoint](./configs/README.md))
- [x] [FlowNetS](https://arxiv.org/abs/1504.06852)
- [x] [FlowNetC](https://arxiv.org/abs/1504.06852) ([3 checkpoints](./configs/README.md))
- [x] [PWCNet](https://arxiv.org/abs/1709.02371) ([3 checkpoints](./configs/README.md))
- [x] [RAFT](https://arxiv.org/abs/2003.12039) ([3 checkpoints](./configs/README.md))
- [x] [VCN](https://papers.nips.cc/paper/2019/hash/bbf94b34eb32268ada57a3be5062fe7d-Abstract.html)### Datasets supported
- [x] [AutoFlow](https://autoflow-google.github.io/)
- [x] [FlyingChairs](https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html#flyingchairs)
- [x] [HD1K](http://hci-benchmark.iwr.uni-heidelberg.de/)
- [x] [KITTI](http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow)
- [x] [Kubric](https://github.com/google-research/kubric)
- [x] [MPI Sintel](http://sintel.is.tue.mpg.de/)
- [x] [SceneFlow Monkaa](https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html)
- [x] [SceneFlow Driving](https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html)
- [x] [SceneFlow FlyingThings3D](https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html)
- [x] [SceneFlow FlyingThings3D subset](https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html)___
### Results and Pre-trained checkpoints
- #### DCVNet | [model config](./configs/models/dcvnet.yaml) | [paper](https://jianghz.me/files/DCVNet_camera_ready_wacv2023.pdf)
| Training Dataset | Training Config | ckpts | Sintel Clean (training) | Sintel Final(training)| KITTI2015 AEPE | KITTI2015 F1-all |
|-----------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------|-----------------------|----------------|------------------|
| FlyingThings3DSubset + Monkaa + Driving | [config](./configs/trainers/dcvnet/dcvnet_sceneflow_baseline.yaml) | [download](https://jianghz.me/files/ezflow_ckpts/dcvnet_sceneflow_step800k.pth) | 1.90 | 3.35 | 4.75 | 23.41% |- #### FlowNetC | [model config](./configs/models/flownet_c.yaml) | [arXiv](https://arxiv.org/abs/1504.06852)
| Training Dataset | Training Config | ckpts | Sintel Clean (training) | Sintel Final(training)| KITTI2015 AEPE | KITTI2015 F1-all |
|------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------|-----------------------|----------------|------------------|
| Chairs | [config](./configs/trainers/flownetc/flownetc_chairs_baseline.yaml) | [download](https://jianghz.me/files/ezflow_ckpts/flownetc_chairs_step1200k.pth) | 3.41 | 4.94 | 14.84 | 54.23% |
| Chairs -> Things | [config](./configs/trainers/flownetc/flownetc_things_baseline.yaml) | [download](https://jianghz.me/files/ezflow_ckpts/flownetc_chairs_things_step1574k.pth) | 2.93 | 4.48 | 12.47 | 45.89% |
| Kubric | [config](./configs/trainers/flownetc/flownetc_kubric_improved_aug.yaml) | [download](https://jianghz.me/files/ezflow_ckpts/flownetc_kubric_step1200k.pth) | 3.57 | 3.96 | 12.11 | 36.35% |- #### PWC-Net | [model config](./configs/models/pwcnet.yaml) | [arXiv](https://arxiv.org/abs/1709.02371)
| Training Dataset | Training Config | ckpts | Sintel Clean (training) | Sintel Final(training)| KITTI2015 AEPE | KITTI2015 F1-all |
|------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------|-----------------------|----------------|------------------|
| Chairs | [config](./configs/trainers/pwcnet/pwcnet_chairs_baseline.yaml) | [download](https://jianghz.me/files/ezflow_ckpts/pwcnet_chairs_step1200k.pth) | 3.5 | 4.73 | 17.81 | 51.76% |
| Chairs -> Things | [config](./configs/trainers/pwcnet/pwcnet_things_baseline.yaml) | [download](https://jianghz.me/files/ezflow_ckpts/pwcnet_chairs_things_step2400k.pth)| 2.06 | 3.43 | 11.04 | 32.68% |
| Kubric | [config](./configs/trainers/pwcnet/pwcnet_kubric_improved_aug.yaml) | [download](https://jianghz.me/files/ezflow_ckpts/pwcnet_kubric_step1200k.pth) | 3.08 | 3.31 | 9.83 | 21.94% |- #### RAFT | [model config](./configs/models/raft.yaml) | [arXiv](https://arxiv.org/abs/2003.12039)
| Training Dataset | Training Config | ckpts | Sintel Clean (training) | Sintel Final(training)| KITTI2015 AEPE | KITTI2015 F1-all |
|------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------|-----------------------|----------------|------------------|
| Chairs | [config](./configs/trainers/raft/raft_chairs_baseline.yaml) | [download](https://jianghz.me/files/ezflow_ckpts/raft_chairs_step100k_v2.pth) | 2.23 | 4.56 | 10.45 | 38.93% |
| Chairs -> Things | [config](./configs/trainers/raft/raft_things_baseline.yaml) | [download](https://jianghz.me/files/ezflow_ckpts/raft_chairs_things_step200k_v2.pth) | 1.66 | 2.75 | 5.01 | 16.87% |
| Kubric | [config](./configs/trainers/raft/raft_kubric_improved_aug.yaml) | [download](https://jianghz.me/files/ezflow_ckpts/raft_kubric_step100k_v2.pth) | 2.12 | 2.54 | 6.01 | 17.35% |___
#### Additional Information
- KITTI dataset has been evaluated with a center crop of size `1224 x 370`.
- FlowNetC and PWC-Net uses `padding` of size `64` for evaluating the KITTI2015 dataset.
- RAFT and DCVNet uses `padding` of size `8` for evaluating the Sintel and KITTI2015 datasets.
___
### References- [RAFT](https://github.com/princeton-vl/RAFT)
- [DICL-Flow](https://github.com/jytime/DICL-Flow)
- [PWC-Net](https://github.com/NVlabs/PWC-Net)
- [FlowNetPytorch](https://github.com/ClementPinard/FlowNetPytorch)
- [VCN](https://github.com/gengshan-y/VCN)
- [detectron2](https://github.com/facebookresearch/detectron2)
- [CorrelationLayer](https://github.com/oblime/CorrelationLayer)
- [ptflow](https://github.com/hmorimitsu/ptlflow)