Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/neuro-ml/imops
Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines
https://github.com/neuro-ml/imops
image-processing parallel-computing python
Last synced: 2 months ago
JSON representation
Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines
- Host: GitHub
- URL: https://github.com/neuro-ml/imops
- Owner: neuro-ml
- License: mit
- Created: 2022-08-10T13:44:10.000Z (over 2 years ago)
- Default Branch: master
- Last Pushed: 2024-04-25T16:44:59.000Z (9 months ago)
- Last Synced: 2024-04-26T07:48:29.953Z (9 months ago)
- Topics: image-processing, parallel-computing, python
- Language: Python
- Homepage: https://neuro-ml.github.io/imops/
- Size: 10.7 MB
- Stars: 17
- Watchers: 5
- Forks: 0
- Open Issues: 13
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[![codecov](https://codecov.io/gh/neuro-ml/imops/branch/master/graph/badge.svg)](https://codecov.io/gh/neuro-ml/imops)
[![pypi](https://img.shields.io/pypi/v/imops?logo=pypi&label=PyPi)](https://pypi.org/project/imops/)
![License](https://img.shields.io/github/license/neuro-ml/imops)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/imops)](https://pypi.org/project/imops/)# Imops
Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines.
- [Documentation](https://neuro-ml.github.io/imops/)
- [Benchmarks](https://neuro-ml.github.io/imops/benchmarks/)# Install
```shell
pip install imops # default install with Cython backend
pip install imops[numba] # additionally install Numba backend
```# How fast is it?
Time comparisons (ms) for Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz using 8 threads. All inputs are C-contiguous NumPy arrays. For morphology functions `bool` dtype is used and `float64` for all others.
| function / backend | Scipy() | Cython(fast=False) | Cython(fast=True) | Numba() |
|:----------------------:|:-----------:|:----------------------:|:---------------------:|:-----------:|
| `zoom(..., order=0)` | 2072 | 1114 | **867** | 3590 |
| `zoom(..., order=1)` | 6527 | 596 | **575** | 3757 |
| `interp1d` | 780 | 149 | **146** | 420 |
| `radon` | 59711 | 5982 | **4837** | - |
| `inverse_radon` | 52928 | 8254 | **6535** | - |
| `binary_dilation` | 2207 | 310 | **298** | - |
| `binary_erosion` | 2296 | 326 | **304** | - |
| `binary_closing` | 4158 | 544 | **469** | - |
| `binary_opening` | 4410 | 567 | **522** | - |
| `center_of_mass` | 2237 | **64** | **64** | - |We use [`airspeed velocity`](https://asv.readthedocs.io/en/stable/) to benchmark our code. For detailed results visit [benchmark page](https://neuro-ml.github.io/imops/benchmarks/).
# Features
### Fast Radon transform
```python
from imops import radon, inverse_radon
```### Fast 0/1-order zoom
```python
from imops import zoom, zoom_to_shape# fast zoom with optional fallback to scipy's implementation
y = zoom(x, 2, axis=[0, 1])
# a handy function to zoom the array to a given shape
# without the need to compute the scale factor
z = zoom_to_shape(x, (4, 120, 67))
```
Works faster only for `ndim<=4, dtype=float32 or float64 (and bool-int16-32-64-uint8-16-32 if order == 0), output=None, order=0 or 1, mode='constant', grid_mode=False`
### Fast 1d linear interpolation```python
from imops import interp1d # same as `scipy.interpolate.interp1d`
```
Works faster only for `ndim<=3, dtype=float32 or float64, order=1`### Fast 2d linear interpolation
```python
import numpy as np
from imops.interp2d import Linear2DInterpolator
n, m = 1024, 2
points = np.random.randint(low=0, high=1024, size=(n, m))
points = np.unique(points, axis=0)
x_points = points[: n // 2]
values = np.random.uniform(low=0.0, high=1.0, size=(len(x_points),))
interp_points = points[n // 2:]
num_threads = -1 # will be equal to num of CPU cores
# You can optionally pass your own triangulation as an np.array of shape [num_triangles, 3], element at (i, j) position is an index of a point from x_points
interpolator = Linear2DInterpolator(x_points, values, num_threads=num_threads, triangles=None)
# Also you can pass values to __call__ and rewrite the ones that were passed to __init__
interp_values = interpolator(interp_points, values + 1.0, fill_value=0.0)
```### Fast binary morphology
```python
from imops import binary_dilation, binary_erosion, binary_opening, binary_closing
```
These functions mimic `scikit-image` counterparts
### Padding```python
from imops import pad, pad_to_shapey = pad(x, 10, axis=[0, 1])
# `ratio` controls how much padding is applied to left side:
# 0 - pad from right
# 1 - pad from left
# 0.5 - distribute the padding equally
z = pad_to_shape(x, (4, 120, 67), ratio=0.25)
```### Cropping
```python
from imops import crop_to_shape# `ratio` controls the position of the crop
# 0 - crop from right
# 1 - crop from left
# 0.5 - crop from the middle
z = crop_to_shape(x, (4, 120, 67), ratio=0.25)
```### Labeling
```python
from imops import label# same as `skimage.measure.label`
labeled, num_components = label(x, background=1, return_num=True)
```# Backends
For all heavy image routines except `label` you can specify which backend to use. Backend can be specified by a string or by an instance of `Backend` class. The latter allows you to customize some backend options:
```python
from imops import Cython, Numba, Scipy, zoomy = zoom(x, 2, backend='Cython')
y = zoom(x, 2, backend=Cython(fast=False)) # same as previous
y = zoom(x, 2, backend=Cython(fast=True)) # -ffast-math compiled cython backend
y = zoom(x, 2, backend=Scipy()) # use scipy original implementation
y = zoom(x, 2, backend='Numba')
y = zoom(x, 2, backend=Numba(parallel=True, nogil=True, cache=True)) # same as previous
```
Also backend can be specified globally or locally:
```python
from imops import imops_backend, set_backend, zoomset_backend('Numba') # sets Numba as default backend
with imops_backend('Cython'): # sets Cython backend via context manager
zoom(x, 2)
```
Note that for `Numba` backend setting `num_threads` argument has no effect for now and you should use `NUMBA_NUM_THREADS` environment variable.
Available backends:
| function / backend | Scipy | Cython | Numba |
|:-------------------:|:---------:|:---------:|:---------:|
| `zoom` | ✓ | ✓ | ✓ |
| `interp1d` | ✓ | ✓ | ✓ |
| `radon` | ✗ | ✓ | ✗ |
| `inverse_radon` | ✗ | ✓ | ✗ |
| `binary_dilation` | ✓ | ✓ | ✗ |
| `binary_erosion` | ✓ | ✓ | ✗ |
| `binary_closing` | ✓ | ✓ | ✗ |
| `binary_opening` | ✓ | ✓ | ✗ |
| `center_of_mass` | ✓ | ✓ | ✗ |# Acknowledgements
Some parts of our code for radon/inverse radon transform as well as the code for linear interpolation are inspired by
the implementations from [`scikit-image`](https://github.com/scikit-image/scikit-image) and [`scipy`](https://github.com/scipy/scipy).
Also we used [`fastremap`](https://github.com/seung-lab/fastremap), [`edt`](https://github.com/seung-lab/euclidean-distance-transform-3d) and [`cc3d`](https://github.com/seung-lab/connected-components-3d) out of the box.