https://github.com/neurreps/awesome-neural-geometry
A curated collection of resources and research related to the geometry of representations in the brain, deep networks, and beyond
https://github.com/neurreps/awesome-neural-geometry
List: awesome-neural-geometry
awesome-list deep-learning differential-geometry equivariance group-theory neural-computation neural-networks neuroscience papers symmetry topology
Last synced: 5 days ago
JSON representation
A curated collection of resources and research related to the geometry of representations in the brain, deep networks, and beyond
- Host: GitHub
- URL: https://github.com/neurreps/awesome-neural-geometry
- Owner: neurreps
- Created: 2022-07-31T01:19:57.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2025-02-18T18:26:50.000Z (3 months ago)
- Last Synced: 2025-04-24T02:01:51.968Z (13 days ago)
- Topics: awesome-list, deep-learning, differential-geometry, equivariance, group-theory, neural-computation, neural-networks, neuroscience, papers, symmetry, topology
- Homepage: https://neurreps.org
- Size: 237 KB
- Stars: 970
- Watchers: 31
- Forks: 66
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- best-of-atomistic-machine-learning - GitHub
- awesome-awesome-artificial-intelligence - Awesome Neural Geometry - neural-geometry?style=social) | (Miscellaneous)
- awesome-awesome-artificial-intelligence - Awesome Neural Geometry - neural-geometry?style=social) | (Miscellaneous)
README
# Awesome Neural Geometry
[](https://github.com/neurreps/reading-list/pulls) [](https://awesome.re)  
A curated collection of resources and research related to the geometry of representations in the brain, deep networks, and beyond, collaboratively generated on the [Symmetry and Geometry in Neural Representations](https://www.neurreps.org) Slack Workspace.
This is a collaborative work-in-progress. Please contribute via PRs!
[Join us on Slack!](https://communityinviter.com/apps/neurreps/join)

## Contents
- [**Educational Resources**](#resources)
- [Abstract Algebra + Group Theory](#grouptheory)
- [Differential Geometry + Lie Groups](#diffgeo)
- [Information Geometry](#infogeo)
- [Topology](#topology)
- [Geometric Machine Learning](#gdl)
- [Computational Neuroscience](#neuro-resources)
- [**Datasets**](#datasets)
- [**Software Libraries**](#software)
- [**Conferences and Workshops**](#conferences)
# Educational Resources
### Abstract Algebra + Group Theory
#### Textbooks & Notes
* [**Group Theory: A Primer** (2019)
*Luciano da Fontoura Costa*](https://www.researchgate.net/profile/Luciano-Da-F-Costa/publication/334126746_Group_Theory_A_Primer_CDT-11/links/5da83b2f299bf1c1e4c8ffb4/Group-Theory-A-Primer-CDT-11.pdf)
* [**Tensors in Computations** (2021)
*Lek-Heng Lim*](https://arxiv.org/pdf/2106.08090.pdf)
* [**Aspects of Harmonic Analysis and Representation Theory** (2021)
*Gallier & Quaintance*](https://drive.google.com/file/d/1eK8B1UpTJTnCXV6DL4-blDaKo6XQk28r/view?usp=sharing)
* [**Basic concepts of representation theory** (2013)
*Amritanshu Prasad*](https://cel.archives-ouvertes.fr/cel-00963677/document)
* [**Representation Theory of Finite Groups** (2012)
*Bemjamin Steinberg*](https://drive.google.com/file/d/1fe1qnVAkCHEY1hn9sOvcA6Ocww66fMmP/view?usp=sharing)#### Courses, Lectures, and Videos
* [**Essence of Group Theory** **Beginner-Friendly*
*Mathemaniac*](https://youtube.com/playlist?list=PLDcSwjT2BF_VuNbn8HiHZKKy59SgnIAeO)
* [**Abstract Algebra** **Beginner-Friendly*
*Socratica*](https://youtube.com/playlist?list=PLi01XoE8jYoi3SgnnGorR_XOW3IcK-TP6)
* [**Euler's formula with introductory group theory** **Intuition Building*
*3blue1brown*](https://www.youtube.com/watch?v=mvmuCPvRoWQ&t=648s&ab_channel=3Blue1Brown)
* [**What is a Tensor?**
*XylyXylyX*](https://youtube.com/playlist?list=PLRlVmXqzHjUQARA37r4Qw3SHPqVXgqO6c)
* [**Representation Theory**
*Math Doctor Bob*](https://youtube.com/playlist?list=PL57457844458A5A1F)
* [**Category Theory for AI**
*Online Course, October 2022*](https://cats.for.ai/)
### Differential Geometry + Lie Groups
#### Textbooks & Notes
* [**Lie Groups, Lie Algebras, and Representations** (2003)
*Brian C. Hall*](https://link.springer.com/book/10.1007/978-3-319-13467-3)
* [**Differential Geometry and Lie Groups: A Computational Perspective** (2020)
*Gallier & Quaintance*](https://link.springer.com/book/10.1007/978-3-030-46040-2)
* [**Introduction to Riemannian Geometry and Geometric Statistics: from basic theory to implementation with Geomstats** (2022)
*Nicolas Guigui, Nina Miolane, Xavier Pannec*](https://hal.inria.fr/hal-03766900/)#### Courses, Lectures, and Videos
* [**Geometry and Topology**](https://youtu.be/kp1k90zNVLc) and [**Symmetry**](https://youtu.be/yCxacFBLHIY) **Beginner-Friendly*
*Sean Carroll*
* [**Differential Geometry for Computer Science**
*Justin Solomon*](https://youtube.com/playlist?list=PLQ3UicqQtfNvPmZftPyQ-qK1wdXBxj86W)
* [**Discrete Differential Geometry**
CMU](https://www.youtube.com/playlist?list=PL9_jI1bdZmz0hIrNCMQW1YmZysAiIYSSS)
* [**What is a Manifold?**
*XylyXylyX*](https://youtube.com/playlist?list=PLRlVmXqzHjUQHEx63ZFxV-0Ortgf-rpJo)
* [**Manifolds**
*Robert Davie*](https://youtube.com/playlist?list=PLeFwDGOexoe8cjplxwQFMvGLSxbOTUyLv)
* [**Lie Groups and Lie Algebras**
*XylyXylyX*](https://youtube.com/playlist?list=PLRlVmXqzHjURZO0fviJuyikvKlGS6rXrb)
* [**Lectures on Geometric Anatomy of Theoretical Physics**
*Frederic Schuller*](https://youtube.com/playlist?list=PLPH7f_7ZlzxTi6kS4vCmv4ZKm9u8g5yic)
* [**Weekend with Bernie (Riemann)**
*Søren Hauberg @ DTU*](http://www2.compute.dtu.dk/~sohau/weekendwithbernie/)
* [**Riemann and Gauss Meet Asimov: A Tutorial on Geometric Methods in Robot Learning, Optimization, and Control**
*IROS 2022*](https://youtube.com/playlist?list=PL_oEZ6dld4ignAdbFvcP_LAJgNbdrNBKC)#### Notebooks and Blogposts
* [**Introduction to Differential Geometry and Machine Learning**
*Geomstats Jupyter notebooks*](https://github.com/geomstats/geomstats/tree/master/notebooks)
* [**Differential Geometry for Machine Learning**
*Roger Grosse*](https://metacademy.org/roadmaps/rgrosse/dgml)
* [**Manifolds: A Gentle Introduction**
*Brian Keng*](https://bjlkeng.github.io/posts/manifolds/)
### Information Geometry
#### Primers
* [**The Many Faces of Information Geometry** (2022)
*Frank Nielsen*](https://www.ams.org/journals/notices/202201/rnoti-p36.pdf)
### Topology
#### Courses, Lectures, and Videos
* [**Computational Algebraic Topology**
Vidit Nanda](https://youtube.com/playlist?list=PLnLAqsCN_2ke8_EUd_KoJsLkPO0BKrrc6)* [**Topological Data Analysis for Machine Learning**
Bastian Rieck](https://www.youtube.com/playlist?list=PLjFHG9gPsecYteKmbVbPhjiz2jHRtKT20)#### Textbooks, Notes
* [**Elementary Applied Topology**
Robert Ghrist](https://www2.math.upenn.edu/~ghrist/notes.html)### Geometric Machine Learning
#### Textbooks
* [**Group Invariance Applications in Statistics** (1989)
Morris Eaton](https://www.jstor.org/stable/4153172)
* [**Group Theoretical Methods in Machine Learning** (2008)
*Risi Kondor, PhD Thesis*](http://www.cs.columbia.edu/~jebara/papers/thesisKondor.pdf)
* [**Pattern Theory: The Stochastic Analysis of Real-World Signals** (2010)
*David Mumford and Agnès Desolneux*](https://www.routledge.com/Pattern-Theory-The-Stochastic-Analysis-of-Real-World-Signals/Mumford-Desolneux/p/book/9781568815794)
* [**Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges** (2021)
_Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković_](https://arxiv.org/abs/2104.13478)
* [**Equivariant Convolutional Networks** (2021)
*Taco Cohen, PhD Thesis*](https://pure.uva.nl/ws/files/60770359/Thesis.pdf)
* [**An Introduction to Optimization on Smooth Manifolds** (2022)
*Nicolas Boumal*](https://sma.epfl.ch/~nboumal/book/IntroOptimManifolds_Boumal_2022.pdf)#### Courses, Lectures, and Videos
* [**Geometric Deep Learning** (2nd Edition)
*Michael Bronstein, Joan Bruna, Taco Cohen, Petar Veličković @ AMMI*](https://www.youtube.com/watch?v=5c_-KX1sRDQ&list=PLn2-dEmQeTfSLXW8yXP4q_Ii58wFdxb3C)
* [**CSC 2547: Current Topics in Machine Learning Methods in 3D and Geometric Deep Learning** (2021)
*Animesh Garg @ University of Toronto*](https://youtube.com/playlist?list=PLki3HkfgNEsLrbI_r2iqNogmL5DW6HJXF)
* [**An Introduction to Group-Equivariant Deep Learning** (2022)
*Erik Bekkers @ UvA*](https://www.youtube.com/playlist?list=PL8FnQMH2k7jzPrxqdYufoiYVHim8PyZWd)
* [**Italian Summer School on Geometric Deep Learning** (2022)
*Cristian Bodnar, Michael Bronstein, Francesco Di Giovanni, Pim de Haan, Maurice Weiler*](https://www.youtube.com/playlist?list=PLn2-dEmQeTfRQXLKf9Fmlk3HmReGg3YZZ)
* [**COMP760: Geometry and Generative Models** (2022)
*Joey Bose and Prakash Panangaden @ MILA*](https://joeybose.github.io/Blog/GenCourse)#### Notebooks and Blogposts
* [**Geometric foundations of Deep Learning**
*Michael Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković*](https://towardsdatascience.com/geometric-foundations-of-deep-learning-94cdd45b451d)
* [**What does 2022 hold for Geometric & Graph ML?**
*Michael Bronstein*](https://towardsdatascience.com/predictions-and-hopes-for-geometric-graph-ml-in-2022-aa3b8b79f5cc)
* [**Geometric Machine Learning for Shape Analysis with Jupyter Notebooks**
*Nina Miolane*](https://github.com/bioshape-lab/ece594n/tree/main/lectures)
### Computational Neuroscience
#### Textbooks
* [**Introduction to the Theory of Neural Computation** (1991)
*John Hertz, Anders Krogh, Richard G Palmer*](https://drive.google.com/file/d/1jjAHNSZld1tjH0wiqXc9wCv3Y6h5sjok/view?usp=sharing)
* [**Theoretical Neuroscience** (2001)
*Peter Dayan*](http://www.gatsby.ucl.ac.uk/~lmate/biblio/dayanabbott.pdf)
* [**Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting** (2006)
*Eugene M. Izhikevich*](https://drive.google.com/file/d/1CXQCPl6MN8XSmoyo6J0TbdlWhBmaib62/view?usp=sharing)
* [**Neuronal Dynamics: From single neurons to networks and models of cognition** (2014)
*Wulfram Gerstner, Werner M. Kistler, Richard Naud and Liam Paninsky*](https://neuronaldynamics.epfl.ch/)
* [**Principles of Neural Design** (2015)
*Peter Sterling & Simon Laughlin*](https://drive.google.com/file/d/1cskdlUJBjAY5wH7GeZa2IxT9iSXZ_3_0/view?usp=sharing)#### Books - General Audience
* [**Rhythms of the Brain** (2006)
*Gyorgy Buzsaki*](https://drive.google.com/file/d/1DtGEb54qJNS2wkny1FXM4b_dfT-b140y/view?usp=sharing)
* [**Networks of the Brain** (2010)
*Olaf Sporns*](https://drive.google.com/file/d/1MsGNsFVF7AxPtnyv1WnH-YnZMGvhUkHb/view?usp=sharing)
* [**Models of the Mind: How Physics, Engineering and Mathematics Have Shaped Our Understanding of the Brain** (2021)
*Grace Lindsay*](https://www.goodreads.com/en/book/show/50884536-models-of-the-mind)#### Tutorials
* [**Generative Models for Neural Data Analysis**
*COSYNE Workshops 2023*](https://github.com/davindicode/cosyne-2023-generative-models)#### Courses, Lectures, and Videos
* [**Neural Computation VS265**
*Bruno Olshausen @ UC Berkeley*](https://redwood.berkeley.edu/courses/vs265/)
# Datasets
### Open-Source Neuroscience Datasets
* [**OpenNeuro**](https://openneuro.org/)
* [**NeuroVault**](https://neurovault.org/)
* [**CRCNS**](https://crcns.org/data-sets)
* [**NeuroData Without Borders**](https://www.nwb.org/example-datasets/)
* [**Allen Brain Atlas**](https://portal.brain-map.org/)
* [**Kavli Institute for Systems Neuroscience Grid Cell Database**](https://www.ntnu.edu/kavli/research/grid-cell-data)
* [**The Natural Scenes Dataset**](http://naturalscenesdataset.org/)
# Software Libraries
* [**Geomstats**](https://geomstats.github.io/)
* Computation, statistics, and machine learning on non-Euclidean manifolds
* [**Giotto TDA**](https://giotto-ai.github.io/gtda-docs/0.5.1/library.html)
* Topological Data Analysis
* [**E3NN**](https://github.com/e3nn/e3nn)
* E(3)-equivariant neural networks
* [**equivariant-MLP**](https://github.com/mfinzi/equivariant-MLP)
* Construct equivariant multilayer perceptrons for arbitrary matrix groups
* [**SHTOOLS**](https://github.com/SHTOOLS/SHTOOLS)
* Python library for computations involving spherical harmonics
* [**LieConv**](https://github.com/mfinzi/LieConv)
* Generalizing convolutional neural networks for equivariance to Lie groups on arbitrary continuous data
* [**Open Neuroscience**](https://open-neuroscience.com/)
* A database of open-source tools and software for neuroscience
* [**LieTorch**](https://gitlab.com/bsmetsjr/lietorch)
* Geometric machine learning and Lie analysis tools for PyTorch
* [**pyRiemann**](https://github.com/pyRiemann/pyRiemann)
* Machine learning for multivariate data through the Riemannian geometry of positive definite matrices
# Conferences and Workshops
* [**NeurIPS Workshop on Symmetry and Geometry in Neural Representations** (2023)](https://neurreps.org)
* [**ICML Workshop on Topology, Algebra and Geometry in Machine Learning** (2023)](https://www.tagds.com/events/conference-workshops/tag-ml23)
* [**RSS Workshop on Symmetries in Robot Learning** (2023)](https://sites.google.com/view/rss23-sym)
* [**NeurIPS Workshop on Symmetry and Geometry in Neural Representations** (2022)](https://www.neurreps.org/past-workshops)
* [**ICML Workshop on Topology, Algebra and Geometry in Machine Learning** (2022)](https://www.tagds.com/events/conference-workshops/tag-ml22)
* [**ICLR Workshop on Geometrical and Topological Representation Learning** (2022)](https://gt-rl.github.io/)
* [**Workshop on Symmetry, Invariance and Neural Representations @ The Bernstein Conference** (2022)](https://bernstein-network.de/bernstein-conference/program/satellite-workshops/symmetry-invariance-and-neural-representations/)