https://github.com/nevillelyh/shapeless-datatype
Shapeless utilities for common data types
https://github.com/nevillelyh/shapeless-datatype
avro bigquery datastore google-cloud scala shapeless tensorflow
Last synced: 6 months ago
JSON representation
Shapeless utilities for common data types
- Host: GitHub
- URL: https://github.com/nevillelyh/shapeless-datatype
- Owner: nevillelyh
- License: apache-2.0
- Created: 2016-10-07T17:27:01.000Z (about 9 years ago)
- Default Branch: main
- Last Pushed: 2025-03-21T18:43:18.000Z (7 months ago)
- Last Synced: 2025-03-30T05:05:30.317Z (7 months ago)
- Topics: avro, bigquery, datastore, google-cloud, scala, shapeless, tensorflow
- Language: Scala
- Homepage:
- Size: 676 KB
- Stars: 67
- Watchers: 6
- Forks: 9
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
shapeless-datatype
==================[](https://github.com/nevillelyh/shapeless-datatype/actions?query=workflow%3ACI)
[](https://codecov.io/github/nevillelyh/shapeless-datatype?branch=master)
[](./LICENSE)
[](https://maven-badges.herokuapp.com/maven-central/me.lyh/shapeless-datatype-core_2.13)
[](https://scala-steward.org)[Shapeless](https://github.com/milessabin/shapeless) utilities for common data types. Also see [Magnolify](https://github.com/spotify/magnolify) for a simpler and faster alternative based on [Magnolia](https://github.com/propensive/magnolia).
# Modules
This library includes the following modules.
- `shapeless-datatype-core`
- `shapeless-datatype-avro`
- `shapeless-datatype-bigquery`
- `shapeless-datatype-datastore`
- `shapeless-datatype-tensorflow`# Core
Core includes the following components.
- A `MappableType` for generic conversion between case class and other data types, used by BigQuery and Datastore modules.
- A `RecordMapper` for generic conversion between case class types.
- A `RecordMatcher` for generic type-based equality check bewteen case classes.
- A `LensMatcher` for generic lens-based equality check between case classes.## RecordMapper
`RecordMapper[A, B]` maps instances of case class `A` and `B` with different field types.
```scala
import shapeless._
import shapeless.datatype.record._
import scala.language.implicitConversions// records with same field names but different types
case class Point1(x: Double, y: Double, label: String)
case class Point2(x: Float, y: Float, label: String)// implicit conversion bewteen fields of different types
implicit def f2d(x: Float) = x.toDouble
implicit def d2f(x: Double) = x.toFloatval m = RecordMapper[Point1, Point2]
m.to(Point1(0.5, -0.5, "a")) // Point2(0.5,-0.5,a)
m.from(Point2(0.5, -0.5, "a")) // Point1(0.5,-0.5,a)
```## RecordMatcher
`RecordMatcher[T]` performs equality check of instances of case class `T` with custom logic based on field types.
```scala
import shapeless.datatype.record._case class Record(id: String, name: String, value: Int)
// custom comparator for String type
implicit def compareStrings(x: String, y: String) = x.toLowerCase == y.toLowerCaseval m = RecordMatcher[Record]
Record("a", "RecordA", 10) == Record("A", "RECORDA", 10) // false// compareStrings is applied to all String fields
m(Record("a", "RecordA", 10), Record("A", "RECORDA", 10)) // true
```## LensMatcher
`LensMatcher[T]` performs equality check of instances of case class `T` with custom logic based on Lenses.
```scala
import shapeless.datatype.record._case class Record(id: String, name: String, value: Int)
// compare String fields id and name with different logic
val m = LensMatcher[Record]
.on(_ >> 'id)(_.toLowerCase == _.toLowerCase)
.on(_ >> 'name)(_.length == _.length)Record("a", "foo", 10) == Record("A", "bar", 10) // false
m(Record("a", "foo", 10), Record("A", "bar", 10)) // true
```# AvroType
`AvroType[T]` maps bewteen case class `T` and [Avro](http://avro.apache.org/) `GenericRecord`. `AvroSchema[T]` generates schema for case class `T`.
```scala
import shapeless.datatype.avro._case class City(name: String, code: String, lat: Double, long: Double)
val t = AvroType[City]
val r = t.toGenericRecord(City("New York", "NYC", 40.730610, -73.935242))
val c = t.fromGenericRecord(r)AvroSchema[City]
```Custom types are also supported.
```scala
import shapeless.datatype.avro._
import java.net.URI
import org.apache.avro.Schemaimplicit val uriAvroType = AvroType.at[URI](Schema.Type.STRING)(v => URI.create(v.toString), _.toString)
case class Page(uri: URI, rank: Int)
val t = AvroType[Page]
val r = t.toGenericRecord(Page(URI.create("www.google.com"), 42))
val c = t.fromGenericRecord(r)AvroSchema[Page]
```# BigQueryType
`BigQueryType[T]` maps bewteen case class `T` and [BigQuery](https://cloud.google.com/bigquery/) `TableRow`. `BigQuerySchema[T]` generates schema for case class `T`.
```scala
import shapeless.datatype.bigquery._case class City(name: String, code: String, lat: Double, long: Double)
val t = BigQueryType[City]
val r = t.toTableRow(City("New York", "NYC", 40.730610, -73.935242))
val c = t.fromTableRow(r)BigQuerySchema[City]
```Custom types are also supported.
```scala
import shapeless.datatype.bigquery._
import java.net.URIimplicit val uriBigQueryType = BigQueryType.at[URI]("STRING")(v => URI.create(v.toString), _.toString)
case class Page(uri: URI, rank: Int)
val t = BigQueryType[Page]
val r = t.toTableRow(Page(URI.create("www.google.com"), 42))
val c = t.fromTableRow(r)BigQuerySchema[Page]
```# DatastoreType
`DatastoreType[T]` maps between case class `T` and [Cloud Datastore](https://cloud.google.com/datastore/) `Entity` or `Entity.Builder` Protobuf types.
```scala
import shapeless.datatype.datastore._case class City(name: String, code: String, lat: Double, long: Double)
val t = DatastoreType[City]
val r = t.toEntity(City("New York", "NYC", 40.730610, -73.935242))
val c = t.fromEntity(r)
val b = t.toEntityBuilder(City("New York", "NYC", 40.730610, -73.935242))
val d = t.fromEntityBuilder(b)
```Custom types are also supported.
```scala
import shapeless.datatype.datastore._
import com.google.datastore.v1.client.DatastoreHelper._
import java.net.URIimplicit val uriDatastoreType = DatastoreType.at[URI](
v => URI.create(v.getStringValue),
u => makeValue(u.toString).build())case class Page(uri: URI, rank: Int)
val t = DatastoreType[Page]
val r = t.toEntity(Page(URI.create("www.google.com"), 42))
val c = t.fromEntity(r)
val b = t.toEntityBuilder(Page(URI.create("www.google.com"), 42))
val d = t.fromEntityBuilder(b)
```# TensorFlowType
`TensorFlowType[T]` maps between case class `T` and [TensorFlow](https://www.tensorflow.org/) `Example` or `Example.Builder` Protobuf types.
```scala
import shapeless.datatype.tensorflow._case class Data(floats: Array[Float], longs: Array[Long], strings: List[String], label: String)
val t = TensorFlowType[Data]
val r = t.toExample(Data(Array(1.5f, 2.5f), Array(1L, 2L), List("a", "b"), "x"))
val c = t.fromExample(r)
val b = t.toExampleBuilder(Data(Array(1.5f, 2.5f), Array(1L, 2L), List("a", "b"), "x"))
val d = t.fromExampleBuilder(b)
```Custom types are also supported.
```scala
import shapeless.datatype.tensorflow._
import java.net.URIimplicit val uriTensorFlowType = TensorFlowType.at[URI](
TensorFlowType.toStrings(_).map(URI.create),
xs => TensorFlowType.fromStrings(xs.map(_.toString)))case class Page(uri: URI, rank: Int)
val t = TensorFlowType[Page]
val r = t.toExample(Page(URI.create("www.google.com"), 42))
val c = t.fromExample(r)
val b = t.toExampleBuilder(Page(URI.create("www.google.com"), 42))
val d = t.fromExampleBuilder(b)
```# License
Copyright 2016 Neville Li.
Licensed under the Apache License, Version 2.0: http://www.apache.org/licenses/LICENSE-2.0