https://github.com/nghorbani/alibaba_ai_task
هدف تحلیل دیتاهای مربوط به قیمت های پرواز تهران مشهد و بالعکس با روش های مبتنی بر یادگیری ماشین می باشد
https://github.com/nghorbani/alibaba_ai_task
dynamic-pricing ml price-prediction
Last synced: 2 months ago
JSON representation
هدف تحلیل دیتاهای مربوط به قیمت های پرواز تهران مشهد و بالعکس با روش های مبتنی بر یادگیری ماشین می باشد
- Host: GitHub
- URL: https://github.com/nghorbani/alibaba_ai_task
- Owner: nghorbani
- License: gpl-3.0
- Created: 2021-11-08T20:17:46.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2021-11-20T02:01:12.000Z (almost 4 years ago)
- Last Synced: 2025-01-05T16:29:14.579Z (9 months ago)
- Topics: dynamic-pricing, ml, price-prediction
- Language: Jupyter Notebook
- Homepage:
- Size: 1.06 MB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Support: support_data/conf/apo_train_conf.yaml
Awesome Lists containing this project
README
# Alibaba AI Task
This repository contains my solution to an AI task by [Alibaba.ir](https://www.alibaba.ir/).
The model is called APO: Alibaba Price Oracle.Given a dataset of flight prices predict future price of 7 days.
## Main Idea
The model prediction is conditioned on the price history. The time frame is considered to be a week; i.e. 7 days.
We theorise that flight price dynamics have airline and market influencing factors.
Airline factors, constitute individual business model, airline assets, demand, etc.
Market is made up of a collection of airlines offering a service on the same route, that creates the supply.
For simplification, we do not differentiate between in-/out-bound flights.We bring in these ideas into the network architecture by self-attention mechanism.
## Installation
APO is originally developed for Python 3.7, PyTorch 1.8.2 LTS, for Ubuntu 20.04.2 LTS.
Below we prepare the python environment using [Anaconda](https://www.anaconda.com/products/individual),
however, we opt for a simple pip package manager for installing dependencies.````
conda create -n apo python=3.7
conda activate apopip3 install torch==1.8.2+cu102 torchvision==0.9.2+cu102 torchaudio==0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
pip install -r requirements.txt
````
Download pretrained models from [here](https://www.dropbox.com/s/fz12plypvktedgu/alibaba_ai_task.zip?dl=0).
## Tutorials
For scripts on data preprocessing, training and testing APO refer to the [tutorials](src/tutorials).## Improvement Candidates
- Differentiate between in-/out-bound flights.
- Use positional encoding to learn price dynamics.
- Introduce K-Fold cross validation
- Use different number of attention layers for price dynamics and market price sub-networks.