Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nickgeneva/kernel_smoothers
Tutorials on kernel smoothing techniques
https://github.com/nickgeneva/kernel_smoothers
kernel-methods kernel-smoothing machine-learning machine-learning-algorithms
Last synced: 20 days ago
JSON representation
Tutorials on kernel smoothing techniques
- Host: GitHub
- URL: https://github.com/nickgeneva/kernel_smoothers
- Owner: NickGeneva
- License: mit
- Created: 2019-04-23T01:01:56.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-05-01T13:38:43.000Z (over 5 years ago)
- Last Synced: 2024-12-02T19:52:35.504Z (about 1 month ago)
- Topics: kernel-methods, kernel-smoothing, machine-learning, machine-learning-algorithms
- Language: Jupyter Notebook
- Homepage:
- Size: 21.7 MB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Kernel Smoothers
Spring 2019 AME-70790 Final Project
Nicholas Geneva (ngeneva at nd.edu, [@NickGeneva](https://twitter.com/NickGeneva))Reference: Wand, M. P., & Jones, M. C. (1994). Kernel smoothing. Chapman and Hall/CRC.
___
![multivariate_regression](figs/08_multivariate_regression.png)
___
Various demo files written in python to illustrate the fundementials of kernel smoothers and kernel methods. This files were written as a part of class final project in Spring 2019.Click on the following links to view each notebook:
1. [01_kernel_bandwidth.ipynb](https://nbviewer.jupyter.org/github/AbsoluteStratos/kernel_smoothers/blob/master/01_kernel_bandwidth.ipynb)
2. [02_kernel_shape.ipynb](https://nbviewer.jupyter.org/github/AbsoluteStratos/kernel_smoothers/blob/master/02_kernel_shape.ipynb)
3. [03_multivariate_kernel.ipynb](https://nbviewer.jupyter.org/github/AbsoluteStratos/kernel_smoothers/blob/master/03_multivariate_kernel.ipynb)
4. [04_chicago_crime_density.ipynb](https://nbviewer.jupyter.org/github/AbsoluteStratos/kernel_smoothers/blob/master/04_chicago_crime_density.ipynb)
5. [05_local_linear_regression.ipynb](https://nbviewer.jupyter.org/github/AbsoluteStratos/kernel_smoothers/blob/master/05_local_linear_regression.ipynb)
6. [06_local_quadratic_regression.ipynb](https://nbviewer.jupyter.org/github/AbsoluteStratos/kernel_smoothers/blob/master/06_local_quadratic_regression.ipynb)
7. [07_nadaraya_watson_regression.ipynb](https://nbviewer.jupyter.org/github/AbsoluteStratos/kernel_smoothers/blob/master/07_nadaraya_watson_regression.ipynb)
8. [08_multivariate_regression.ipynb](https://nbviewer.jupyter.org/github/AbsoluteStratos/kernel_smoothers/blob/master/08_multivariate_regression.ipynb)
9. [09_scottish_hill_races.ipynb](https://nbviewer.jupyter.org/github/AbsoluteStratos/kernel_smoothers/blob/master/09_scottish_hill_races.ipynb)#### Note:
If the Jupyter notebooks do not show on github you can view the rendered version at [nbviewer.org](https://nbviewer.jupyter.org/). Simply paste the respective notebook url into the prompt and it will be executed.