Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nicklhy/AdversarialAutoEncoder
Adversarial AutoEncoder implemented with MXNet
https://github.com/nicklhy/AdversarialAutoEncoder
Last synced: 2 months ago
JSON representation
Adversarial AutoEncoder implemented with MXNet
- Host: GitHub
- URL: https://github.com/nicklhy/AdversarialAutoEncoder
- Owner: nicklhy
- Created: 2016-10-11T02:56:32.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2018-05-18T01:26:12.000Z (over 6 years ago)
- Last Synced: 2024-08-01T22:41:39.888Z (5 months ago)
- Language: Jupyter Notebook
- Size: 797 KB
- Stars: 25
- Watchers: 3
- Forks: 6
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-MXNet - AdversarialAutoEncoder
README
## Adversarial AutoEncoder
----------------------------[Adversarial Autoencoder [arXiv:1511.05644]](http://arxiv.org/abs/1511.05644) implemented with [MXNet](https://github.com/dmlc/mxnet).
### Requirements
* MXNet
* numpy
* matplotlib
* scikit-learn
* OpenCV### Unsupervised Adversarial Autoencoder
Please run aae\_unsupervised.py for model training. Set task to `unsupervised` in visualize.ipynb to display the results. Notice the desired prior distribution of the 2-d latent variable can be one of {gaussian, gaussian mixture, swiss roll or uniform}. In this case, no label info is being used during the training process.Some results:
p(z) and q(z) with z_prior set to gaussian distribution.
![p(z) gaussian](http://closure11.com/images/post/2016/10/gaussian_unsupervised_pz.png)
![q(z) gaussian](http://closure11.com/images/post/2016/10/gaussian_unsupervised_qz.png)p(z) and q(z) with z_prior set to 10 gaussian mixture distribution.
![p(z) gaussian](http://closure11.com/images/post/2016/10/gaussian_mixture_unsupervised_pz.png)
![q(z) gaussian](http://closure11.com/images/post/2016/10/gaussian_mixture_unsupervised_qz.png)p(z) and q(z) with z_prior set to swiss roll distribution.
![p(z) gaussian](http://closure11.com/images/post/2016/10/swiss_roll_unsupervised_pz.png)
![q(z) gaussian](http://closure11.com/images/post/2016/10/swiss_roll_unsupervised_qz.png)### Supervised Adversarial Autoencoder
Please run aae\_supervised.py for model training. Set task to `supervised` in visualize.ipynb to display the results. Notice the desired prior distribution of the 2-d latent variable can be one of {gaussian mixture, swiss roll or uniform}. In this case, label info of both real and fake data is being used during the training process.Some results:
p(z), q(z) and output images from fake data with z_prior set to 10 gaussian mixture distribution.
![p(z) gaussian](http://closure11.com/images/post/2016/10/gaussian_mixture_supervised_pz.png)
![q(z) gaussian](http://closure11.com/images/post/2016/10/gaussian_mixture_supervised_qz.png)
![output images from gaussian fake data](http://closure11.com/images/post/2016/10/gaussian_mixture_supervised_output.png)p(z) and q(z) with z_prior set to swiss roll distribution.
![p(z) gaussian](http://closure11.com/images/post/2016/10/swiss_roll_supervised_pz.png)
![q(z) gaussian](http://closure11.com/images/post/2016/10/swiss_roll_supervised_qz.png)p(z) and q(z) with z_prior set to 10 uniform distribution.
![p(z) gaussian](http://closure11.com/images/post/2016/10/uniform_supervised_pz.png)
![q(z) gaussian](http://closure11.com/images/post/2016/10/uniform_supervised_qz.png)### Semi-Supervised Adversarial Autoencoder
Not implemented yet.