Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nicohlr/ipychart
The power of Chart.js with Python
https://github.com/nicohlr/ipychart
charting-library chartjs charts data data-analysis data-science data-visualization ipywidgets javascript-es6 jupyter jupyter-notebook notebook python
Last synced: about 1 month ago
JSON representation
The power of Chart.js with Python
- Host: GitHub
- URL: https://github.com/nicohlr/ipychart
- Owner: nicohlr
- License: mit
- Created: 2019-06-26T15:41:25.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2024-08-24T18:05:37.000Z (4 months ago)
- Last Synced: 2024-11-04T05:06:38.245Z (about 1 month ago)
- Topics: charting-library, chartjs, charts, data, data-analysis, data-science, data-visualization, ipywidgets, javascript-es6, jupyter, jupyter-notebook, notebook, python
- Language: Python
- Homepage: https://nicohlr.github.io/ipychart/
- Size: 9.68 MB
- Stars: 112
- Watchers: 2
- Forks: 10
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-jupyter - ipychart - Interactive Chart.js plots in Jupyter. (Visualization)
- awesome - ipychart
README
The power of Chart.js with PythonInstallation
------------You can install ipychart from your terminal using pip or conda:
```bash
# using pip
$ pip install ipychart# using conda
$ conda install -c conda-forge ipychart
```Documentation
------------- [**Introduction**](https://nicohlr.github.io/ipychart/user_guide/introduction.html)
- [**Getting Started**](https://nicohlr.github.io/ipychart/user_guide/getting_started.html)
- [**Usage**](https://nicohlr.github.io/ipychart/user_guide/usage.html)
- [**Charts**](https://nicohlr.github.io/ipychart/user_guide/charts.html)
- [**Configuration**](https://nicohlr.github.io/ipychart/user_guide/configuration.html)
- [**Scales**](https://nicohlr.github.io/ipychart/user_guide/scales.html)
- [**Pandas Interface**](https://nicohlr.github.io/ipychart/user_guide/pandas.html)
- [**Advanced Features**](https://nicohlr.github.io/ipychart/user_guide/advanced.html)
- [**Developers**](https://nicohlr.github.io/ipychart/developer_guide/development_installation.html)Usage
------------Create charts with Python in a very similar way to creating charts using Chart.js. The charts created are fully configurable, interactive and modular and are displayed directly in the output of the the cells of your jupyter notebook environment:
![](./docs/docs/.vuepress/public/ipychart-demo.gif)
You can also create charts directly from a pandas dataframe. See the [**Pandas Interface**](https://nicohlr.github.io/ipychart/user_guide/pandas.html) section of the documentation for more details.
Development Installation
------------For a development installation:
$ git clone https://github.com/nicohlr/ipychart.git
$ cd ipychart
$ conda install jupyterlab -c conda-forge
$ cd ipychart/src
$ jlpm install
$ cd ..
$ pip install -e .
$ jupyter nbextension install --py --symlink --sys-prefix ipychart
$ jupyter nbextension enable --py --sys-prefix ipychartReferences
------------- [**Chart.js**](https://www.chartjs.org/)
- [**Ipywidgets**](https://ipywidgets.readthedocs.io/en/latest/index.html)
- [**Ipywidgets cookiecutter template**](https://github.com/jupyter-widgets/widget-ts-cookiecutter)
- [**Chart.js Datalabels**](https://github.com/chartjs/chartjs-plugin-datalabels)
- [**Chart.js Zoom**](https://github.com/chartjs/chartjs-plugin-zoom)
- [**Vuepress**](https://vuepress.vuejs.org/)
- [**GitHub Pages**](https://pages.github.com/)License
------------Ipychart is available under the [MIT license](https://opensource.org/licenses/MIT).