An open API service indexing awesome lists of open source software.

https://github.com/nicolossus/pylfi

pyLFI is a Python toolbox using likelihood-free inference (LFI) methods for estimating the posterior distributions of model parameters.
https://github.com/nicolossus/pylfi

bayesian-inference likelihood-free-inference simulation-based-inference

Last synced: 3 months ago
JSON representation

pyLFI is a Python toolbox using likelihood-free inference (LFI) methods for estimating the posterior distributions of model parameters.

Awesome Lists containing this project

README

        

# pyLFI

[![PyPI version](https://badge.fury.io/py/pylfi.svg)](https://badge.fury.io/py/pylfi)
[![python compatibility](https://img.shields.io/pypi/pyversions/pylfi.svg)](https://pypi.python.org/pypi/pylfi)
[![Documentation Status](https://readthedocs.org/projects/pylfi/badge/?version=latest)](https://pylfi.readthedocs.io/en/latest/?badge=latest)
[![Tests](https://github.com/nicolossus/pylfi/workflows/Tests/badge.svg?branch=main)](https://github.com/nicolossus/pylfi/actions)
[![GitHub license](https://img.shields.io/github/license/nicolossus/pylfi)](https://github.com/nicolossus/pylfi/blob/pylfi/LICENSE)

`pyLFI` is a Python toolbox for Bayesian parameter estimation in models with intractable likelihood functions. By using *Likelihood-Free Inference* (LFI) schemes, in particular *Approximate Bayesian Computation* (ABC), `pyLFI` estimates the posterior distributions over model parameters.

## Overview

`pyLFI` presently includes the following methods:

* Rejection ABC
* MCMC ABC
* Post-sampling regression adjustment.

`pyLFI` was created as a part of the author's [Master thesis](https://github.com/nicolossus/Master-thesis).

## Installation instructions

### Install with pip
`pyLFI` can be installed directly from [PyPI](https://pypi.org/project/pylfi/):

$ pip install pylfi

## Requirements
* `Python` >= 3.8

## Documentation
Documentation can be found at [pylfi.readthedocs.io](https://pylfi.readthedocs.io/).

## Getting started
Check out the [Examples gallery](https://pylfi.readthedocs.io/en/latest/auto_examples/index.html) in the documentation.

## Automated build and test
The repository uses continuous integration (CI) workflows to build and test the project directly with GitHub Actions. Tests are provided in the [`tests`](tests) folder. Run tests locally with `pytest`:

$ python -m pytest tests -v