Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nicomignoni/tiresia
Tiny sklearn-based AutoML tool.
https://github.com/nicomignoni/tiresia
automl data-science machine-learning sklearn
Last synced: about 2 months ago
JSON representation
Tiny sklearn-based AutoML tool.
- Host: GitHub
- URL: https://github.com/nicomignoni/tiresia
- Owner: nicomignoni
- License: mit
- Created: 2021-01-22T16:52:03.000Z (about 4 years ago)
- Default Branch: master
- Last Pushed: 2021-02-11T17:00:35.000Z (almost 4 years ago)
- Last Synced: 2024-12-15T22:38:15.399Z (about 2 months ago)
- Topics: automl, data-science, machine-learning, sklearn
- Language: Python
- Homepage:
- Size: 303 KB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# tiresia
[![PyPI version shields.io](https://img.shields.io/pypi/v/tiresia.svg)](https://pypi.python.org/pypi/tiresia/)
## Installation
```
pip install tiresia
```## Description
[tiresia](https://en.wikipedia.org/wiki/Tiresias) is just a wrapper around [scikit-learn](https://scikit-learn.org/stable/) ```GridSearchCV```. The idea is to simplify the model testing workflow. With tiresia you can choose which models to test and to exclude and provide a ```param_grid``` for the ones you want to explore deeper, while keeping the parameters of the less interesting ones on default.## Example
```python
from tiresia.predictor import AutoPredictorfrom sklearn.datasets import make_regression, make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score, r2_scoretest_type = "classifier"
if test_type == "classifier":
train, target = make_classification(1000, 20)
elif test_type == "regressor":
train, target = make_regression(1000, 20)
x_train, x_test, y_train, y_test = train_test_split(train, target, test_size=0.3)autopred = AutoPredictor(estimator_type=test_type)
autopred.fit(x_train, y_train, x_test, y_test, scoring=roc_auc_score, greater_is_better=True)predictions = autopred.predictions
results = autopred.resultsprint(results)
CLASSIFIER roc_auc_score
4 DecisionTreeClassifier 0.990
10 GradientBoostingClassifier 0.990
22 RandomForestClassifier 0.973
0 AdaBoostClassifier 0.963
1 BaggingClassifier 0.960
7 ExtraTreesClassifier 0.960
24 RidgeClassifierCV 0.936
23 RidgeClassifier 0.936
18 NuSVC 0.936
14 LinearDiscriminantAnalysis 0.936
16 LogisticRegression 0.923
26 SVC 0.923
3 CalibratedClassifierCV 0.920
15 LinearSVC 0.917
17 NearestCentroid 0.917
25 SGDClassifier 0.916
6 ExtraTreeClassifier 0.907
19 PassiveAggressiveClassifier 0.907
20 Perceptron 0.906
11 KNeighborsClassifier 0.893
8 GaussianNB 0.884
9 GaussianProcessClassifier 0.870
2 BernoulliNB 0.840
12 LabelPropagation 0.827
13 LabelSpreading 0.827
21 QuadraticDiscriminantAnalysis 0.615
5 DummyClassifier 0.473```