Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nihui/dain-ncnn-vulkan
DAIN, Depth-Aware Video Frame Interpolation implemented with ncnn library
https://github.com/nihui/dain-ncnn-vulkan
dain gpu ncnn video-interpolation vulkan
Last synced: 10 days ago
JSON representation
DAIN, Depth-Aware Video Frame Interpolation implemented with ncnn library
- Host: GitHub
- URL: https://github.com/nihui/dain-ncnn-vulkan
- Owner: nihui
- License: mit
- Created: 2020-08-24T03:26:05.000Z (about 4 years ago)
- Default Branch: master
- Last Pushed: 2023-10-29T12:40:22.000Z (about 1 year ago)
- Last Synced: 2024-10-22T16:05:03.993Z (17 days ago)
- Topics: dain, gpu, ncnn, video-interpolation, vulkan
- Language: C
- Homepage:
- Size: 41.5 MB
- Stars: 514
- Watchers: 15
- Forks: 45
- Open Issues: 28
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
- awesome-ncnn - dain-ncnn-vulkan - Aware Video Frame Interpolation. (Application projects / Video Frame Interpolation)
- StarryDivineSky - nihui/dain-ncnn-vulkan - ncnn-vulkan 使用 ncnn 项目作为通用神经网络推理框架。 (视频生成、补帧、摘要 / 网络服务_其他)
README
# DAIN ncnn Vulkan
![CI](https://github.com/nihui/dain-ncnn-vulkan/workflows/CI/badge.svg)
![download](https://img.shields.io/github/downloads/nihui/dain-ncnn-vulkan/total.svg)ncnn implementation of DAIN, Depth-Aware Video Frame Interpolation.
dain-ncnn-vulkan uses [ncnn project](https://github.com/Tencent/ncnn) as the universal neural network inference framework.
## [Download](https://github.com/nihui/dain-ncnn-vulkan/releases)
Download Windows/Linux/MacOS Executable for Intel/AMD/Nvidia GPU
**https://github.com/nihui/dain-ncnn-vulkan/releases**
This package includes all the binaries and models required. It is portable, so no CUDA or Caffe runtime environment is needed :)
## About DAIN
DAIN (Depth-Aware Video Frame Interpolation) (CVPR 2019)
https://github.com/baowenbo/DAIN
Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang
This work is developed based on our TPAMI work MEMC-Net, where we propose the adaptive warping layer. Please also consider referring to it.
https://sites.google.com/view/wenbobao/dain
http://arxiv.org/abs/1904.00830
## Usages
Input two frame images, output one interpolated frame image.
### Example Command
```shell
./dain-ncnn-vulkan -0 0.jpg -1 1.jpg -o 01.jpg
./dain-ncnn-vulkan -i input_frames/ -o output_frames/
```### Video Interpolation with FFmpeg
```shell
mkdir input_frames
mkdir output_frames# find the source fps and format with ffprobe, for example 24fps, AAC
ffprobe input.mp4# extract audio
ffmpeg -i input.mp4 -vn -acodec copy audio.m4a# decode all frames
ffmpeg -i input.mp4 input_frames/frame_%06d.png# interpolate 2x frame count
./dain-ncnn-vulkan -i input_frames -o output_frames# encode interpolated frames in 48fps with audio
ffmpeg -framerate 48 -i output_frames/%06d.png -i audio.m4a -c:a copy -crf 20 -c:v libx264 -pix_fmt yuv420p output.mp4
```### Full Usages
```console
Usage: dain-ncnn-vulkan -0 infile -1 infile1 -o outfile [options]...
dain-ncnn-vulkan -i indir -o outdir [options]...-h show this help
-v verbose output
-0 input0-path input image0 path (jpg/png/webp)
-1 input1-path input image1 path (jpg/png/webp)
-i input-path input image directory (jpg/png/webp)
-o output-path output image path (jpg/png/webp) or directory
-n num-frame target frame count (default=N*2)
-s time-step time step (0~1, default=0.5)
-t tile-size tile size (>=128, default=256) can be 256,256,128 for multi-gpu
-m model-path dain model path (default=best)
-g gpu-id gpu device to use (default=auto) can be 0,1,2 for multi-gpu
-j load:proc:save thread count for load/proc/save (default=1:2:2) can be 1:2,2,2:2 for multi-gpu
-f pattern-format output image filename pattern format (%08d.jpg/png/webp, default=ext/%08d.png)
```- `input0-path`, `input1-path` and `output-path` accept file path
- `input-path` and `output-path` accept file directory
- `num-frame` = target frame count
- `time-step` = interpolation time
- `tile-size` = tile size, use smaller value to reduce GPU memory usage, must be multiple of 32, default 256
- `load:proc:save` = thread count for the three stages (image decoding + dain interpolation + image encoding), using larger values may increase GPU usage and consume more GPU memory. You can tune this configuration with "4:4:4" for many small-size images, and "2:2:2" for large-size images. The default setting usually works fine for most situations. If you find that your GPU is hungry, try increasing thread count to achieve faster processing.
- `pattern-format` = the filename pattern and format of the image to be output, png is better supported, however webp generally yields smaller file sizes, both are losslessly encodedIf you encounter a crash or error, try upgrading your GPU driver:
- Intel: https://downloadcenter.intel.com/product/80939/Graphics-Drivers
- AMD: https://www.amd.com/en/support
- NVIDIA: https://www.nvidia.com/Download/index.aspx## Build from Source
1. Download and setup the Vulkan SDK from https://vulkan.lunarg.com/
- For Linux distributions, you can either get the essential build requirements from package manager
```shell
dnf install vulkan-headers vulkan-loader-devel
```
```shell
apt-get install libvulkan-dev
```
```shell
pacman -S vulkan-headers vulkan-icd-loader
```2. Clone this project with all submodules
```shell
git clone https://github.com/nihui/dain-ncnn-vulkan.git
cd dain-ncnn-vulkan
git submodule update --init --recursive
```3. Build with CMake
- You can pass -DUSE_STATIC_MOLTENVK=ON option to avoid linking the vulkan loader library on MacOS```shell
mkdir build
cd build
cmake ../src
cmake --build . -j 4
```### TODO
* test-time sptial augmentation aka TTA-s
* test-time temporal augmentation aka TTA-t## Sample Images
### Original Image
![origin0](images/0.png)
![origin1](images/1.png)### Interpolate with dain
```shell
dain-ncnn-vulkan.exe -0 0.png -1 1.png -o out.png
```![cain](images/out.png)
## Original DAIN Project
- https://github.com/baowenbo/DAIN
## Other Open-Source Code Used
- https://github.com/Tencent/ncnn for fast neural network inference on ALL PLATFORMS
- https://github.com/webmproject/libwebp for encoding and decoding Webp images on ALL PLATFORMS
- https://github.com/nothings/stb for decoding and encoding image on Linux / MacOS
- https://github.com/tronkko/dirent for listing files in directory on Windows