Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/nihui/realcugan-ncnn-vulkan

real-cugan converter ncnn version, runs fast on intel / amd / nvidia / apple-silicon GPU with vulkan
https://github.com/nihui/realcugan-ncnn-vulkan

amd gpu intel linux macos ncnn nvidia realcugan vulkan windows

Last synced: about 19 hours ago
JSON representation

real-cugan converter ncnn version, runs fast on intel / amd / nvidia / apple-silicon GPU with vulkan

Awesome Lists containing this project

README

        

# Real-CUGAN ncnn Vulkan

:exclamation: :exclamation: :exclamation: This software is in the early development stage, it may bite your cat

![CI](https://github.com/nihui/realcugan-ncnn-vulkan/workflows/CI/badge.svg)
![download](https://img.shields.io/github/downloads/nihui/realcugan-ncnn-vulkan/total.svg)

ncnn implementation of Real-CUGAN converter. Runs fast on Intel / AMD / Nvidia / Apple-Silicon with Vulkan API.

realcugan-ncnn-vulkan uses [ncnn project](https://github.com/Tencent/ncnn) as the universal neural network inference framework.

## [Download](https://github.com/nihui/realcugan-ncnn-vulkan/releases)

Download Windows/Linux/MacOS Executable for Intel/AMD/Nvidia/Apple-Silicon GPU

**https://github.com/nihui/realcugan-ncnn-vulkan/releases**

This package includes all the binaries and models required. It is portable, so no CUDA or PyTorch runtime environment is needed :)

## About Real-CUGAN

Real-CUGAN (Real Cascade U-Nets for Anime Image Super Resolution)

https://github.com/bilibili/ailab/tree/main/Real-CUGAN

## Usages

### Example Command

```shell
realcugan-ncnn-vulkan.exe -i input.jpg -o output.png
```

### Full Usages

```console
Usage: realcugan-ncnn-vulkan -i infile -o outfile [options]...

-h show this help
-v verbose output
-i input-path input image path (jpg/png/webp) or directory
-o output-path output image path (jpg/png/webp) or directory
-n noise-level denoise level (-1/0/1/2/3, default=-1)
-s scale upscale ratio (1/2/3/4, default=2)
-t tile-size tile size (>=32/0=auto, default=0) can be 0,0,0 for multi-gpu
-c syncgap-mode sync gap mode (0/1/2/3, default=3)
-m model-path realcugan model path (default=models-se)
-g gpu-id gpu device to use (-1=cpu, default=auto) can be 0,1,2 for multi-gpu
-j load:proc:save thread count for load/proc/save (default=1:2:2) can be 1:2,2,2:2 for multi-gpu
-x enable tta mode
-f format output image format (jpg/png/webp, default=ext/png)
```

- `input-path` and `output-path` accept either file path or directory path
- `noise-level` = noise level, large value means strong denoise effect, -1 = no effect
- `scale` = scale level, 1 = no scaling, 2 = upscale 2x
- `tile-size` = tile size, use smaller value to reduce GPU memory usage, default selects automatically
- `syncgap-mode` = sync gap mode, 0 = no sync, 1 = accurate sync, 2 = rough sync, 3 = very rough sync
- `load:proc:save` = thread count for the three stages (image decoding + realcugan upscaling + image encoding), using larger values may increase GPU usage and consume more GPU memory. You can tune this configuration with "4:4:4" for many small-size images, and "2:2:2" for large-size images. The default setting usually works fine for most situations. If you find that your GPU is hungry, try increasing thread count to achieve faster processing.
- `format` = the format of the image to be output, png is better supported, however webp generally yields smaller file sizes, both are losslessly encoded

If you encounter a crash or error, try upgrading your GPU driver:

- Intel: https://downloadcenter.intel.com/product/80939/Graphics-Drivers
- AMD: https://www.amd.com/en/support
- NVIDIA: https://www.nvidia.com/Download/index.aspx

## Build from Source

1. Download and setup the Vulkan SDK from https://vulkan.lunarg.com/
- For Linux distributions, you can either get the essential build requirements from package manager
```shell
dnf install vulkan-headers vulkan-loader-devel
```
```shell
apt-get install libvulkan-dev
```
```shell
pacman -S vulkan-headers vulkan-icd-loader
```

2. Clone this project with all submodules

```shell
git clone https://github.com/nihui/realcugan-ncnn-vulkan.git
cd realcugan-ncnn-vulkan
git submodule update --init --recursive
```

3. Build with CMake
- You can pass -DUSE_STATIC_MOLTENVK=ON option to avoid linking the vulkan loader library on MacOS

```shell
mkdir build
cd build
cmake ../src
cmake --build . -j 4
```

## Sample Images

### Original Image

![origin](images/0.jpg)

### Upscale 2x with ImageMagick

```shell
convert origin.jpg -resize 200% output.png
```

![browser](images/1.png)

### Upscale 2x with ImageMagick Lanczo4 Filter

```shell
convert origin.jpg -filter Lanczos -resize 200% output.png
```

![browser](images/4.png)

### Upscale 2x with Real-CUGAN

```shell
realcugan-ncnn-vulkan.exe -i origin.jpg -o output.png -s 2 -n 1 -x
```

![realcugan](images/2.png)

## Original Real-CUGAN Project

- https://github.com/bilibili/ailab/tree/main/Real-CUGAN

## Other Open-Source Code Used

- https://github.com/Tencent/ncnn for fast neural network inference on ALL PLATFORMS
- https://github.com/webmproject/libwebp for encoding and decoding Webp images on ALL PLATFORMS
- https://github.com/nothings/stb for decoding and encoding image on Linux / MacOS
- https://github.com/tronkko/dirent for listing files in directory on Windows