Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/nikbarb810/covid_growth_rate_390.51
Exploring Covid Growth Rate of European Population using genetic data analysis
https://github.com/nikbarb810/covid_growth_rate_390.51
bioinformatics data-analysis r rcpp
Last synced: 8 days ago
JSON representation
Exploring Covid Growth Rate of European Population using genetic data analysis
- Host: GitHub
- URL: https://github.com/nikbarb810/covid_growth_rate_390.51
- Owner: nikbarb810
- Created: 2023-06-20T20:38:37.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-09-16T12:34:26.000Z (about 1 year ago)
- Last Synced: 2024-11-08T15:07:18.893Z (8 days ago)
- Topics: bioinformatics, data-analysis, r, rcpp
- Homepage:
- Size: 3.9 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Estimating Rate of Growth of SARS-CoV-2 in the European Population
## Overview
This project focuses on estimating the growth rate of the SARS-CoV-2 virus in the European population using genetic data analysis. The goal is to identify the parameter responsible for observed genetic changes.
## Methodology
### Data Preparation
- Read and format observation and simulation files.
- Simulations consist of 10,000 datasets with 50 sequences each.### Pairwise Difference Calculation
- Calculate the average number of pairwise differences between sequences.
- Optimize performance using Rcpp-based C++ implementation.### Parameter Estimation
#### Average Number of Pairwise Differences (k Estimate)
- `k_estimate` function calculates average pairwise differences for simulations.
#### Rcpp Implementation for Performance
- Utilize C++ with Rcpp to enhance performance.
#### Calculation of Other Parameters
- Calculate "w" and "Tajima's D" based on average pairwise differences.
### Normalization of Parameters
- Normalize parameters for simulations and observations.
### Parameter Comparison and Approximation
- Compare parameters between simulations and observations.
#### Parameter Association
- Associate parameters with distances.
- Select the 500 closest parameters from simulations.#### Parameter Estimation
- Approximate the parameter that generated the observed dataset based on the 500 closest parameters.
## Results
- The estimated growth rate parameter for SARS-CoV-2 in the European population is approximately 98.4.
- Compared to the mean parameter value of 185.5 from simulations, this suggests a decrease in the virus's growth rate over time.## Conclusion
This project provides insights into the growth rate of SARS-CoV-2 in the European population using genetic data analysis. The estimation indicates a decrease in the growth rate, which may have implications for understanding the virus's evolution and spread.
## Author
- [Nikolaos Barmparousis](https://github.com/nikbarb810)
## License
This project is licensed under the [MIT License](LICENSE).