https://github.com/nikhilroxtomar/human-face-segmentation-in-tensorflow
This repository contains the code for Multiclass Segmentation on the human faces using Landmark Guided Face Parsing (LaPa) dataset in TensorFlow.
https://github.com/nikhilroxtomar/human-face-segmentation-in-tensorflow
multiclass-segmentation tensorflow tensorflow-segmentation
Last synced: about 1 month ago
JSON representation
This repository contains the code for Multiclass Segmentation on the human faces using Landmark Guided Face Parsing (LaPa) dataset in TensorFlow.
- Host: GitHub
- URL: https://github.com/nikhilroxtomar/human-face-segmentation-in-tensorflow
- Owner: nikhilroxtomar
- Created: 2022-11-18T12:12:06.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2022-12-01T05:08:38.000Z (over 2 years ago)
- Last Synced: 2025-03-28T08:11:30.624Z (about 2 months ago)
- Topics: multiclass-segmentation, tensorflow, tensorflow-segmentation
- Language: Python
- Homepage:
- Size: 1.26 MB
- Stars: 11
- Watchers: 1
- Forks: 4
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Human Face Segmentation in TensorFlow
This repository contains the code for `Multiclass Segmentation` on the human faces using `Landmark Guided Face Parsing` (LaPa) dataset.
**YouTube Tutorial:** [Human Face Segmentation using UNET in TensorFlow](https://youtu.be/yUOlLd-8jng)# Dataset
The LaPa dataset contains the training, validation and testing dataset. Each dataset have images, segmentation mask and the 106 human facial key points.
Download the dataset: [Landmark Guided Face Parsing (LaPa)](https://github.com/JDAI-CV/lapa-dataset)
Dataset paper: [A New Dataset and Boundary-Attention Semantic Segmentation for Face Parsing](https://aaai.org/ojs/index.php/AAAI/article/view/6832/6686)Original Image | Grayscale Mask | RGB Mask
:-------------------------:|:-------------------------:|:-------------------------:
 |  | The following models are used:
- [UNET](https://arxiv.org/abs/1505.04597)## Contact:
For more follow me on: