https://github.com/nikhilroxtomar/multiclass-image-segmentation-using-unetr-in-tensorflow
Multiclass Image Segmentation on Human Face Segmentation in TensorFlow
https://github.com/nikhilroxtomar/multiclass-image-segmentation-using-unetr-in-tensorflow
multiclass-segmentation tensorflow unet unet-transformer unetr unetr-segmentation
Last synced: 5 months ago
JSON representation
Multiclass Image Segmentation on Human Face Segmentation in TensorFlow
- Host: GitHub
- URL: https://github.com/nikhilroxtomar/multiclass-image-segmentation-using-unetr-in-tensorflow
- Owner: nikhilroxtomar
- Created: 2024-02-02T12:37:40.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2024-02-02T12:49:07.000Z (almost 2 years ago)
- Last Synced: 2024-11-16T06:28:02.746Z (about 1 year ago)
- Topics: multiclass-segmentation, tensorflow, unet, unet-transformer, unetr, unetr-segmentation
- Language: Python
- Homepage:
- Size: 2.5 MB
- Stars: 4
- Watchers: 2
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Multiclass-Image-Segmentation-using-UNETR-in-TensorFlow
This GitHub repository demonstrates the utilization of UNETR for multiclass image segmentation on the Landmark Guided Face Parsing dataset (LaPa) dataset.
.
## Architecture
|  |
| :--: |
| *The block diagram of the Original UNETR model.* |
## Dataset
LaPa stands for Landmark guided face Parsing dataset (LaPa). It is a large-scale dataset for human face parsing. It consists of more than 22,000 facial images with abundant variations in expression, pose and occlusion, and each image of LaPa is provided with a 11-category pixel-level label map and 106-point landmarks.
Download the dataset: [Landmark guided face Parsing dataset (LaPa)](https://drive.google.com/file/d/1XOBoRGSraP50_pS1YPB8_i8Wmw_5L-NG/view?usp=sharing)
For more: [LaPa-Dataset for face parsing](https://github.com/jd-opensource/lapa-dataset)
## Results
The sequence in the images below is `Input Image`, `Ground Truth` and `Prediction`.
|  |
| :--: |
|  |
|  |
|  |
|  |
## How to improve
- Train on more epochs.
- Increase the input image resolution.
- Apply data augmentation.
## Contact
For more follow me on: