https://github.com/nikhilweee/parallel-backprop
Implement backpropagation from scratch and parallelize using CUDA
https://github.com/nikhilweee/parallel-backprop
Last synced: 2 months ago
JSON representation
Implement backpropagation from scratch and parallelize using CUDA
- Host: GitHub
- URL: https://github.com/nikhilweee/parallel-backprop
- Owner: nikhilweee
- License: mit
- Created: 2022-12-06T23:32:12.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2022-12-13T07:57:36.000Z (over 2 years ago)
- Last Synced: 2025-01-22T09:09:56.675Z (4 months ago)
- Language: C++
- Size: 17.6 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
This repository implements a simple MLP in three languages: Python, C++ and CUDA.
# Python
It is recommended to use `conda` to install the required dependencies.
```console
$ conda env create -f env.yaml
```To create the train and test datasets, run `make_csv.py`
```console
$ python make_csv.py
```To run backpropagation in Python, run `network.py`
```console
$ python network.py
```# C++
To build the C++ version, use `make`.
```console
$ make run_cpu
```You can also run tests using `make`.
```console
$ make run_cpu_tests
```# CUDA
To build the CUDA version, use `make`.
```console
$ make run_cuda
```You can also run tests using `make`.
```console
$ make run_cuda_tests
```