Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/nilayhangarge/data-analysis-with-python

This repository provides a practical introduction to data acquisition and analysis using Pandas. It covers loading datasets, exploring data, manipulating data, and gaining insights through statistical summaries. Ideal for beginners, it offers code examples and explanations to enhance your data manipulation skills using Pandas for Python.
https://github.com/nilayhangarge/data-analysis-with-python

data-acquisition data-analysis data-analytics data-binning data-cleaning data-engineering data-fundamentals data-insights data-integration data-preprocessing data-science data-wrangling numpy pandas python

Last synced: about 1 month ago
JSON representation

This repository provides a practical introduction to data acquisition and analysis using Pandas. It covers loading datasets, exploring data, manipulating data, and gaining insights through statistical summaries. Ideal for beginners, it offers code examples and explanations to enhance your data manipulation skills using Pandas for Python.

Awesome Lists containing this project

README

        

# **Data Analysis with Python**

## Table of Contents
* [Lab-1 Introduction](#lab-1-introduction)
* [Lab-2 Data Wrangling](#lab-2-data-wrangling)

## **Lab-1: Introduction**
This notebook provides an introduction to data acquisition and basic insights using the Pandas library. It covers data loading, exploration, and statistical summaries.

### Topics
- Data acquisition: Loading dataset from local or online sources using Pandas.
- Basic insights: Data types, statistical summaries, and dataset information.

### Prerequisites
- Python and Jupyter Notebook.
- Basic understanding of Python programming and data manipulation.

### Dataset
[Automobile Dataset](https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data) (CSV Format)

### Libraries Used
- Pandas: Data manipulation and analysis.
- NumPy: Numerical computations.

## **Lab-2: Data Wrangling**

This notebook focuses on data wrangling tasks, which involve preparing and cleaning data for analysis.

### Topics
- Identify & Handle missing values
- Identify & Deal with missing values
- Correct data format
- Standardizing & Normalizing data.
- Binning Numerical Variables.
- Indicator Variable (Dummy Variable).

### Prerequisites
- Lab-1 Introduction
- Familiarity with Pandas library.

### Dataset
[Automobile Dataset](https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data) (CSV Format)

### Libraries Used
- Pandas
- NumPy
- Matplotlib: Data visualization.